

Preparatory Study on

Eco-design of Boilers

Task 5 (FINAL)

Base Case

René Kemna Martijn van Elburg William Li Rob van Holsteijn

Delft, 30 September 2007

VHK

Van Holsteijn en Kemna BV, Elektronicaweg 14, NL-2628 XG Delft, Netherlands

Report prepared for:

European Commission, DG TREN, Unit D3, Rue de la Loi 200, 1100 Brussels, Belgium

Technical officer:

Matthew Kestner

DISCLAIMER & IMPORTANT NOTE

The underlying report is a draft and may be subject to change. The authors accept no liability for any material or immaterial direct or indirect damage resulting from the use of this report or its content. This report contains the results of research by the authors and any opinions in this report are to be seen as strictly theirs. The report is not to be perceived as the opinion of the European Commission, nor of any of the expertsor stakeholders consulted.

CONTENTS

1.1	Introduction	1
1.2	Task Report Structure	
DE	FINITIONS	3
2.1	Definition of Performance	3
2.2	Definition of Load Profiles	
	2.2.1 Climate	5
	2.2.2 Dwelling Characteristics	
	2.2.3 Extreme conditions	
	2.2.4 Normal conditions: Gross heat loads and unavoidable losses	7
2.3	Definition Environmental Impact	
2.4	Definition and fixed inputs Life Cycle Costs	
SPI	ECIFIC INPUTS	12
3.1	Materials (BOMs)	12
3.2	Manufacturing phase	13
3.3	Distribution phase	13
3.4	Use Phase	13
3.5	End-of-Life phase (EOL)	17
3.6	LCC Inputs: Prices and installation costs	18
3.7	EU Totals: Markets by Category	18
En	VIRONMENTAL IMPACT	21
_	E CYCLE COSTS	23
LIF		

LIST OF TABLES

pag	e
Table 2-1. Load-profiles and dwelling/ building characteristics	3
Table 2-2. Load profiles: Net heat load, average power, peak output power required	
in normal and extreme circumstances	6
Table 2-3. Load: Minimum Required Output Power per BaseCase category	7
Table 2-4. Load profiles: Gross Heat Load.	
Table 2-5 . Selection of relevant Unit Indicators from EcoReport /	
MEEUP Methodology Table 29	9
Table 2-6. Running costs fixed parameters for LCC (EU avg)	
Table 3-1 Bills of Materials for Base Case (avg. new boiler) categories	
Table 3-2. Manufacturing inputs for BaseCases1	
Table 3-3. Distribution inputs for BaseCases1	
Table 3-4. Design Inputs BaseCases1	
Table 3-5. Annual Energy Consumption BaseCases	
Table 3-6. Summary Use Phase inputs10	
Table 3-7. Default EOL scenario1	
Table 3-8. EOL Inputs Base Cases1	
Table 3-9. EU 2004 Boiler Market, segmented by sector, application, boiler type and	
capacity18	3
Table 3-10. Prices and Installation Costs BaseCases PER UNIT	
Table 3-11. Estimated market segmentation of BaseCases)
Table 4-1. Environmental impacts BaseCases	
Table 5-1. Life Cycle Costs and Annual Expenditure PER UNIT	
Table 6.1. Environmental Impact BaseCases sold in 2005 over their product life (17 years) 20	
Table 6.2. Life Cycle Costs and Annual Expenditure for BaseCase units sold in 2005	
over their product life (17 years)	7

Introduction

1.1 Introduction

The aim of Task 5 is the assessment of the "Base Case", which represents the average new Central-Heating System currently sold in the EU. The definition of the Base Case entails

- Performance Characteristics
- Environmental Impacts and
- Life Cycle Costs

It will be the basis for establishing the saving potential, both environmentally and economically, of the Design Options in the Task 6 report and it will be one of the major inputs in the Scenario Analysis in Task 7 (Subtask 7.2).

Task 5 comprises the following subtasks, as defined by contract:

- 5.1. Retrieval of product-specific inputs
- 5.2. BaseCase Environmental Impact Assessment
- 5.3. BaseCase Life Cycle Costs assessment
- 5.4. Calculation of EU-Totals
- 5.5. EU-25 Total System Impact discussion

The inputs for **subtask 5.1** are given in the Task 1 to 4 reports:

- Bills of Materials (incl. product volume and weight) were given by the European Heating Industry (EHI) and checked against independent sources.
- Annual resources consumption is based on the Integrated Boiler Model, which in turn is based on
 - EN product test standards as well as standards relating to the Energy Performance of Buildings. (Task 1 report).
 - Market data regarding boiler typology (Task 2 report)
 - Building and dwelling characteristics (Task 3 report)
 - Energy consumption for the use phase (Task 4 report)

Emissions were assessed on the basis of international standards (Task 1 report) and technology research (Task 4 report). For the Base Case the EcoReport defaults were used.

For reasons outlined in Task 1 report —and in agreement with the European Commission—no direct distinction will be made between *Standard BaseCase*, i.e. based only on current steady-state testing, and the *Real-Life BaseCase*. Instead we will define a "BaseCase" which is based on the Integrated Boiler Model, i.e. which takes data from EN test standards but incorporates them in a wider model to obtain more realistic results.

For inputs where no specific data could be retrieved —e.g. the metal scrap recovery and EOL scenario— the default values from the "EuP Eco-report" were used.

The reports of Tasks 1 to 4 give ample explanation of the data and in Task 5 we will mainly focus on the results. Having said that, regarding the performance characteristics and specific we will give an overview in the following paragraph.

For **subtasks 5.2 to 5.4** we use all features of the EuP EcoReport tool that was developed in the MEEUP study (VHK, 2005). For the Use Phase we will make a split-up between electricity and fossil fuel resources used, although eventually they will all be expressed in terms of their environmental impact.

According to contract, a calculation of the total system impact —as opposed to what is now commonly referred to as the "boiler"— is required in **Subtask 5.5**. However, as was assessed in earlier task reports, the boiler's performance and environmental impact cannot be captured adequately without the system, we have already chosen a systems-approach from the outset. And thereby a separate assessment, i.e. subtask 5.5, is no longer necessary.

1.2 Task Report Structure

Chapter 2 introduces the Definitions of Performance, Environmental Impact and Life Cycle Costs as well as some fixed input values.

After that, this task report will largely follow the order of the subtasks. Chapter 3 gives the Specific Inputs for the Base Case. Chapter 4 and 5 give the outputs of the Environmental Impact and Life Cycle Assessment respectively. In Chapter 6 the EUtotals are presented.

2 DEFINITIONS

2.1 Definition of Performance

Currently, the most commonly used performance characteristic of a central heating system is its heating power (in kW). "Power" is then most often defined not as the heating output, but the <u>fuel input</u>, following EN standards.

However, although the "power" undoubtedly is an important factor, we do not believe this adequately represents the function of a central heating system. Not even if we use the output power (instead of the energy input) and not even —although this should be done—if we consider all the inputs (latent heat, electricity, primary energy for power plants).

Instead, the performance of a central heating system can be defined as

"the capability of the system to reach and keep the indoor climate of an enclosed space (dwelling, building, etc.) at a desired level under normal and extreme circumstances, in as much as is possible through heating, using hydronic heat emitters".

This definition consists of three parts¹:

- A first restriction regarding the parameter of the indoor climate to be influenced ("in as much as is possible through heating"). This excludes e.g. cooling and ventilation.
- A second restriction regards the means to influence the parameter ("using hydronic heat emitters"). This excludes air-heating, local heaters and passive space heating measures.

We speak of "indoor climate" and not "indoor temperature". This stresses the fact that the indoor climate comprises a range of parameters, such as air quality (CO, CO2, formaldehydes, etc.), air velocity ("drafts"), humidity ("dry throat", funghi), etc.. But perhaps more importantly it makes clear that there is no such thing as "The indoor temperature". The heating comfort depends on the average air temperature, stratification (the air temperature gradient e.g. between floor and ceiling level), the radiation heat of the walls, etc.. The relevant EPB standards for buildings (e.g. EN 832) take this —explicitly or implicitly—into account.

The ECOBOILER Integrated Model, which was presented in Task 4, follows these EPB standards. The Model gives penalties for Stratification and whenever the Model speaks of "indoor temperature" it actually refers to what is called the "operative temperature", which is (roughly) an average of the room air temperature and the temperature of the walls and ceiling.

¹ For the sake of our contract, we should also exclude solid fuels, but this is understood.

Linked to this is the definition of the "desired level" for the indoor climate. Of course -- in order to make the definition operational—we have to use one single reference temperature. Or better, a single reference temperature per zone. For a dwelling we use 19 degrees Celsius for the living room and kitchen, 18 degrees for the bedrooms and 21 degrees for the bathroom.

This *desired temperature* will depend on the performance of the heating system. For instance, stratification of room air will lead to a higher desired temperature, e.g. because people will otherwise suffer from cold feet ("hot head, cold feet"). This can lead to an up to 0,7°C higher desired temperature. Temperature fluctuations, e.g. between 19 and 21 degrees for the operative temperature, can lead to a 1°C higher desired temperature. As a consequence —and this is taken into account in the Integrated Model— the final "desired temperature" can be up to 2°C or more higher than the reference temperature.

Another aspect of the "desired level" is occupancy, i.e. when there is no-one there the desired level of indoor climate in a room is considerably lower. As much as thermal mass and internal heat transfer allow, there are heating systems with timer functions for the whole building or single rooms to anticipate that. The Integrated Model takes that (and the diminishing effect of thermal mass, etc.) into account.

On average, taking into account the effect of stratification, temperature fluctuations and night setback, the ECOBOILER Integrated Model finds an average desired temperature of 20.4° C for the whole house.

Then there is the definition of "normal and extreme circumstances". This implies well-defined contexts in which the heating system is evaluated. This relates not just to the climate (outdoor temperatures and solar irradiance over the season but also over a day) but also to the building (dimensions, insulation, thermal mass, ventilation, etc.). In the Integrated Model all these are defined not just for the "EU-25 average", which we take as a reference for the Base Case, but also for each single Member State (for the Sensitivity Analysis in Task 7). With the input data from JRC Ispra we thus create a basis for what is a "normal" circumstance, which is e.g. on average a temperature of around 7°C for the EU average heating season. But the Integrated Model calculates the heating output (i.e. the radiator capacity) on the basis of the "extreme" situation: an outdoor temperature that is on average minus 10 degrees Celsius in the EU.

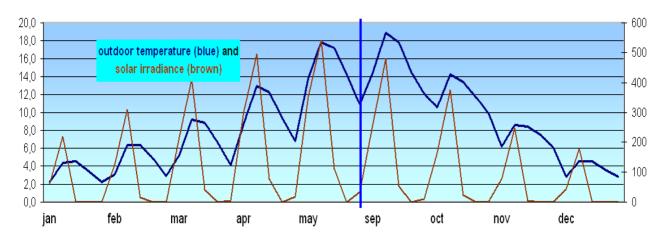
Furthermore, per country and for the EU-average the Integrated Model distinguishes between "apartment", "house" and "average dwelling" but also between "new" and "existing".

Finally, we have to define what is intended by "normal" heat emitters and piping. The Task 2 report shows that >70-80% of the boilers sold end up in buildings with a radiator system. Convector heating or floor heating are niche markets. Therefore the Integrated Model assumes by default a radiator system, with a radiator constant of 1,3. The radiator capacity is based on the 'extreme' circumstance indicated above (e.g. -10°C) and a safety (oversizing) factor **Csafe** which, based on empirical studies, is set at 2,5.

The result is a radiator system that can be used both for high-temperature (HT) and low-temperature heating (LT) and thereby would cover the widest possible range of heating system solutions. The piping ('distribution losses' in the Integrated Model) is defined according to the standards.

This is as far as the "fixed" part of the Integrated Model goes. All the other components of the heating system like the heat generator (in the widest sense, e.g. including solar thermal and heat pumps), the temperature controllers (room or boiler thermostat, sensors, etc.) and the valve controllers (conventional valves or TRVs, PID or CPU controlled motor-valves, etc.) are all part of the "central heating system" that has to cope with the load-profile given by the "fixed part".

2.2 Definition of Load Profiles


As mentioned above, the definition of performance requires a definition of the "normal and extreme circumstances".

For various reasons (transparency for the consumer and the manufacturers), it would be wise to limit the number of load-profiles to a minimum. On the other hand it has to be recognized that a correct dimensioning of the load is very important for the environmental impact and costs, especially in the residential sector (the "lower" loads) where there is little technical assistance in dimensioning correctly (see Task 3 report). For that reason we propose, within the fixed values EU-average values mentioned above, to vary at least the load profile according to the type of dwelling. To characterize this load we use the classification that is most familiar to consumers (e.g. for clothes), ranging from extremely small (XXS) to very small (XS), small (S), medium (M), large (L), very large (XL) and extremely large (XXL). These are qualifications that are especially helpful for the consumer and small installer. At the very latest for the size "XXL", which is a collective boiler, there will be purchase decision makers that look beyond this simple classification and make a proper heat calculation and select the system performance on the basis of the technical fiche.

2.2.1 Climate

For 9 months (Sept.-May) every month-day is characterized by 5 periods (morning 7-9, midday 9-16, evening 16-21, late 21-23, night 23-7h) with each specific outdoor temperature and solar irradiance values.

The graph below gives the EU-25 average climate data that are used in the ECOBOILER Integrated Model. For the full table, see spreadsheet and Task 4 report.

Figure 5-1. Average outdoor temperature and global solar irradiance for 9 average month-days Sept.-May in the average EU-25 climate, as used in the ECOBOILER integrated model (based on meteorological data from JRC Ispra database)

2.2.2 Dwelling Characteristics

The following tables describes the dwelling characteristics from which the 7 load profiles are derived. For more details, see spreadsheet and Task 4 report.

Table 2-1. Load-profiles and dwelling/ building characteristics

		Heated volume (m³)	Heated floor area (m²)	Insulation value (W/m².K)	infiltration losses (m³/m³)	ventilation losses (m³/m³)	AV ratio	Nominal radiator capacity (kW)
Cat.	Model	F	F	U	qinf	qv	AV	Pradnom
xxs	apartment new	232	78	0,53	0,12	0,47	0,40	6,4
XS	average new	288	101	0,53	0,14	0,47	0,51	9,3
S	apartment existing*	196	66	1,03	0,15	0,65	0,40	9,4
M	average existing	245	86	1,03	0,19	0,65	0,51	13,9
L	house existing	292	106	1,03	0,22	0,65	0,60	19,0
XL	new building (8 apartments)	1852	628	0,53	0,12	0,47	0,40	51,3
XXL	existing building (8 ap.)	1571	532	1,03	0,15	0,65	0,40	75,3
3XL	High rise apt. building (20 exist apt.s)	4994	1693	0,86	0,14	0,59	0,4	205
4XL	3 high-rise apt. buildings (60 exist. apt.s)	14981	5078	0,86	0,14	0,59	0,4	616

Notes:

ceiling height **h**= 2,85 m; Vent heat recovery **qrec**: 3-5% (exist-new); Internal transmission heat per m² **qinfi** (Aij: Uij): 0,60 W/m².K; Internal infiltration per m³ Vi: **qinfi**: 0,10 m³/m³; Internal temperature correction **b**: 0,5; Solar gain factor **sgf**: 5% At a last minute request of the Commission size-classes 3XL and 4XL were added: figures are indicative.

2.2.3 Extreme conditions

The table below presents the net heat load, the average power requirement during the heating season (Oct-Apr), the "normal" peak power output required on the coldest average day.

The last column of the table gives the peak power output that is required at a temperature of minus 10 degrees Celsius, which in most U-countries is used as the net design load of a CH-boiler.

Table 2-2. Load profiles: Net heat load, average power, peak output power required in normal and extreme circumstances

		Net heat load (kWh/a)	Average net power [7 months] (kW)	Normal peak power [Jan. Morning] (kW)	Extreme peak power [-10°C] (kW)
Cat.	Model	Qnet	Pavg	Phnorm	Phextr.
xxs	apartment new	2.350	0,46	0,80	2,60
XS	average new	3.700	0,72	1,20	3,70
S	apartment existing*	4.850	0,95	1,40	5,00
М	average existing	7.480	1,47	2,20	5,60
L	house existing	10.515	2,06	3,10	7,60
XL	new building (8 apartments)	20.284	4,00	7,20	22,20
XXL	existing building (8 ap.)	42.195	8,00	13,20	33,60
3XL	High rise apt. building (20 exist apt.s)	106.738	20,23	33,38	84,78
4XL	3 high-rise apt. buildings (60 exist. apt.s)	320.215	60,70	100,16	254,41

At a last minute request of the Commission size-classes 3XL and 4XL were added; figures are indicative.

^{*=} similar to new house (5203 kWh/year net heat load)

The *extreme peak power* above is calculated with the ECOBOILER Integrated Model, following EN 832 conventions, i.e. it incorporates transmission and ventilation losses.

According to EN 12831 (*Heating Systems in Buildings - Method for calculation of the design heat load, version 2003*) around <u>15-20% has to be added for heat-up</u>, depending on thermal mass of the building construction and the degree of night-setback (1, 2 or 3 K).

Furthermore, there is a temperature correction factor that relates to the quality of the cold bridges in the construction. For external walls the default value is 1 (= no correction) with insulated cold bridges. If the cold bridges are not insulated —which is true for a part of the existing houses and buildings-- this value is 40% higher. We will assume a 15% temperature correction.

The total correction for heat-up (1,2) and temperature correction (1,15) thus becomes 1,38 (=1,2*1,15). This results in the <u>Minimum Heat Output Required</u> for the various load profiles, shown in the third column of the table below.

The fourth and last column in this table is for informative purposes and shows how the installer currently translates the design heat load into the boiler input power, taking into account efficiency and a safety factor (see Csafe above). In total this results in a factor 2,8 with respect of the design heat load, whereas in reality a factor of e.g. 1,4 (at 70% efficiency) would have been more than sufficient. We will use this last column as an input for the definition of the Base Case.

Table 2-3. Load: Minimum Required Output Power per BaseCase category

		Extreme peak power [-10°C]	Temperature & heat-up correction factor EN 12831	MINIMUM REQUIRED OUTPUT POWER	est. input power BaseCase (incl. eff + oversize)
Cat.	Model	Phextr.	#	kW	kW
xxs	apartment new	2,60	1,38	3,6	10
XS	average new	3,70	1,38	5,1	14
S	apartment existing*	5,00	1,38	6,9	19
M	average existing	5,60	1,38	7,7	22
L	house existing	7,60	1,38	10,5	29
XL	new building (8 apartments)	22,20	1,38	30,6	60
XXL	existing building (8 ap.)	33,60	1,38	46,4	115
3XL	High rise apt. (20 exist apt.s)	84,78	1,38	117	250
4XL	3 high-rise apt. (60 exist. apt.s)	254,41	1,38	350	750

At a last minute request of the Commission size-classes 3XL and 4XL were added; figures are indicative.

2.2.4 Net and Gross heat loads

The "Net heat loads" are defined in the ECOBOILER Integrated Boiler for the various load classes. They consist of the energy inputs that are necessary (at the requested indoor temperatures) to compensate for the outdoor climate and building conditions as given also in Table 2-2 for the average EU-25. In the ECOBOILER Integrated Model these energy losses are referred to as: Net heat load = Tset + Tmass + Tintrans.

All efficiency figures are related to this Net Heat Load. But also, as mentioned earlier, the piping and the radiator system are given as a fixed part of the load, because they are inherent to the fact that this is a hydronic central heating system. As such some losses are introduced, which can be deemed "unavoidable", because it is not possible to operate the given system without at least some stratification losses, distribution losses, etc.. In other words, the system can never reach 100% energy efficiency with respect of its heating power output.

Therefore, as a secondary figure, the gross heat load is also calculated. This figure integrates all unavoidable losses. In that sense, the Gross Heat Load represents the lowest possible energy input that can be achieved with the given hydronic CH-system for a theoretical *"Ideal Boiler"* plus 100% efficient and effective controls. It can also be used as the yardstick for the System Efficiency.

The table below shows the Gross Heat Load and its components for the size-classes XXS to XXL:

Table 2-4. Load profiles: Gross Heat Load.

Gross Heat Load is the net heat load plus "unavoidable" losses that are inherent of the hydronic emitter system. The Gross Heat Load can be used as a secondary yardstick for the system efficiency.

	Net heat load	un	Gross heat			
	(kWh/a)	Stratification (kWh/a)	Distribution (kWh/a)	Other* (kWh/a)	load (kWh/a)	
Cat. Model	Qnet	Qstrat	Qdistr	Qgen+	Qgross	
XXS apartment new	2.354	175	428	370	3.327	
XS average new	3.699	277	517	370	4.863	
S apartment existing	4.850	295	532	370	6.047	
M average existing	7.480	435	594	370	8.879	
L house existing	10.515	592	635	370	12.112	
XL new building (8 apartments)	20.284	1.429	2.707	978	25.398	
XXL existing building (8 ap.)	42.195	2.409	3.231	1.618	49.453	

^{*=} Other relates to unavoidable generator losses (264 kWh/a), auxiliary electricity (88 kWh/s) and standby heat (18 kWh/a); For XL: 720+240+18,3=978,3; For XXL: 1200+400+18= 1618

2.3 Definition Environmental Impact

The assessment of the environmental impact should follow the MEEUP methodology and more specifically the EcoReport tool. The latter is a spreadsheet calculation tool that helps the user in performing the proper calculations with the Unit Indicators in Table 29 of the MEEUP Methodology Report (VHK, Nov. 2005).

The table on the following page presents a selection of Table 29 for Unit Indicators that are relevant for the CH-systems.

Unit Indicators nr. 68-73 represent the impact for gas-and oil-fired boilers per GJ heat <u>output</u>. The primary energy values and efficiencies are given in Net Calorific Value. For our purpose, i.e. the link with the ECOBOILER Integrated Model it is more convenient to

- a. use Gross Calorific Values (divide by 111% for gas and 106% for oil)
- b. recalculate —using the given efficiencies in the table—the values per unit of energy input, first in GJ (for gas and oil) then in kWh (for "fuel")
- c. use an average "fuel" value with the relative shares of gas and oil (for new boilers 88/12%). ²

This explains the conversions inserted in the table after Unit Indicators 68-73.

Note that the emission values during the use phase are based on the MEEUP report, as is requested in the contract. MEEUP data are based on GEMIS 4.2. Eurofuel points out that newer data are available from the GEMIS 4.3 database. These can be found in Annex E of the Task 3 report.

 $^{^{2}}$ In Task 7.2 (scenario analysis) the share in the stock is 78/22% for gas/oil fired boilers

Table 2-5 . Selection of relevant Unit Indicators from EcoReport/ MEEUP Methodology Table 29

Row	Mat/process			ene	rgy		water		waste	GWP	AD	voc	POP	Hma	PAH	PM	HMw	EP
nr			tot	el	fd	proc	cool	no	haz	CO2	SOx		i-Teq	Ni	Ni		Hg/20	PO4
		recyc	MJ	MJ	ΜJ	ltr	ltr	g	g	kg	g	g	ng	mg	mg	g	mg	ç
4	PP	0%	73	7	53	5	40	4	28	1,97	6	0,02	0	0	0	1	0	165
5	PS	0%	87	4	48	5	177	1	22	2,79	17	0,00	0	0	121	2	0	55
10	ABS	0%	95	7	46	9	165	10	92	3,32	18	0,00	0	0	2	3	2	630
15	Rigid PUR	0%	104	17	39	60	301	20	427	4,17	31	0,00	0	0	20	7	43	3186
21	St sheet galv.	5%	34	2	0	0		0	1722	2,83	7	0,14	26	4	0	3	4	65
23	Cast iron	85%	10	0	0	1	4	0	315	1,06	3	0,12	6	2	0	14	1	26
25	Stainless 18/8 coil	63%	62	10	4	76	8	0	1000	6,21	56	0,14	8	148	0	8	86	2328
27	Al diecast	85%	55	0	0	0		0	750	3,55	16	0,07	33	1	18	4	6	•
30	Cu tube/sheet	60%	51	0	0	0		0	8014	2,73	63	0,00	10	33	5	1	38	62
31	CuZn38 cast	85%	38	0	0	0		0	3043	1,81	35	0,01	25	57	3	1	9	15
98	avg. controller board		781	579	3	523	106	652	1680	51,53	437	6,45	6	73	60	22	333	4702
54	glass/ mineral		16	13	0	8			14	0,83	3							
34	foundries Fe/Cu/Zn		2	1	0	0	1	0	7	0,12	1	0,00	0	0	0	0	0	1
35	foundries Al		7	4	0	0	2	0	20	0,36	2	0,00	0	0	0	0	0	2
36	sheetmetal plant		15	9	1	0	4	0	47	0,84	4	0,00	0	0	0	1	0	6
37	sheetmetal scrap		12	5	0	0	0	0	180	0,80	4	0,09	11	25	0	1	0	C
53	PWB assembly		128	3	5	12	36	4	107	8,52	49	3,10	0	1	3	15	0	709
60	per m³ appliances		798	3	0	0	0	6	277	46,67	150	15,73	2	14	36	3204	0	7
61	per product		52	0	0	0	0	1	51	4,52	12	0,05	0	3	3	0	0	1
63	per m³ installed produc	ct	312	0	0	0	0	4	177	18,60	50	4,91	1	9	8	214	0	5
65	Electricity per MWh		10500	10500	0	700	28000	242	12174	458,21	2704	3,95	69	180	21	58	68	323
68	Gas, η 86%, atmosphe	eric	1163	0	0	0	0	0	0	64,29	19	0,85	0	0	0	0	0	C
69	Gas, η 90%, atmosph.		1111	0	0	0	0	0	0	61,43	18	0,81	0	0	0	0	0	C
70	Gas, η 101%, condens	S.	990	0	0	-14	0	0	0	54,74	16	0,72	0	0	0	0	0	C
71	Gas, η 103%, condens	S.	971	0	0	-20	0	0	0	53,68	16	0,71	0	0	0	0	0	C
72	Oil, η 85%, atmosph.		1176	0	0	0	0	0	0	87,76	110	1,52	0	0	0	1,857	0	C
73	Oil, η 95%, condens.		1053	0	0	-14	0	0	0	78,52	98	1,36	0	0	0	1,662	0	C
78	Extra for fossil fuel ext	raction 8	& transp	ort: Ga	s +7	7% (ro	w 68-73)	, Oil -	-10% (rov	n 72-73))							
conv	ersion per GJ gas/oil	input o	n GCV															
	Gas		964	0	0	*	0	0	0	53,30	15	0,66	0	0	0,024	0,252	0	C
	Oil		1038	0	0	*	0	0	0	77,41	97	1,34	0	0	0,028	1,638	0	C
conv	version per kWh avg. f	fuel inp	ut on G	CV -→		gas	88%	oil	12%									
	Fuel		3,50	0	0	NA	0	0	0	0,20	0,09	0,00	0	0	0,000	0,002	0	C
86	Mini-van diesel		2	0	0	0	0	0	0	0,19	0	0,04	0	1	1	9	0	C
88	Landfill		68	0	0	0	0	0	1226	5,10	10	0,28	8	20	0	89	6	325
90	HFC refrigerants & R7	44	GWP v	alues:	R13	4a=13	00, R40	4a=32	60, R410	a=1730	, R152	2a=140	, R744	= CO2	2=1			
91	Incinerated		67	0	0	0	0	1000	0	5,02	10	0,14	0	18	0	85	5,7	325
92	Plastics, re-use, recyc		7	0	0	0	0	0	3	0,44	2	0,13	0	1	0	30	0,0	0

⁹³ Metals, WEEE recycling credits already incorporated in production (e.g. 85% recycling rate instead of 60-65% for cast metal products)

⁹⁴ Plastics, Thermal recycling: credit is 75% of feedstock energy & GWP of plastics used (displaces oil)

⁹⁵ Plastics, Re-use/ closed loop recycling: credit is 75% of all production impact of plastics used

⁹⁶ Plastics, Recycling: credit is 27 MJ (displaces wood) + 50% of feedstock energy & GWP of plastics (less chance heat recovery)

⁹⁷ Electronics: if designed for easy separate shreddering credit is 20% of production impact components and materials

Some Comments on Interpretation of the Data

Despite the recalculation towards kWh input, it may still be difficult to interpret the emission values that are given.

For instance, although the data is there, it is not self-evident that for gas-fired boilers the emissions of NOx are equivalent to 42 ppm NOx. For this you need to know that the 0,052 g SOx equivalent/kWh equals 0,074 g NOx (conversion factor 0,7 from *MEEUP Methodology Report, VHK 2005*) and that 74 mg NOx/kWh equals 42 ppm/kWh input (1,76 mg NOx/kWh per ppm, from *Handbuch Feuerungstechnik 2006, Linke W. et al.*).

This value of 42 ppm/ khW input which originally came from the GEMIS 4.2 database of the Öko-Institut is the official value that is used in legislation and it follows EN standards, which are all based on measurement of the NOx-content in the flue gases.

But actually it is not the value that is the most relevant for policy goals and treaties like the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP), also known as "Gothenburg protocol", which was then translated into the European NEC directive (National Emission Ceilings for SO2, NOx and NH3). The latter sets targets in terms of absolute emissions (kg). In other words, it would be more appropriate to know the mg NOx/kWh output of a boiler.

2.4 Definition and fixed inputs Life Cycle Costs

Annex II of the EuP-Directive provides guidance regarding the definition of Life Cycle Costs (LCC). The LCC analysis method 'uses a real discount rate on the basis of data provided from the European Central Bank and a realistic lifetime for the EuP; it is based on the sum of the variation in purchase price (resulting from variations in industrial costs) and in operating expenses, which result from the different levels of technical improvement options, discounted over the lifetime of the representative EuP. The operating expenses cover primarily energy consumption an additional expenses in other resources (such as water or detergent).'

The relevant equation is

$$LCC = PP + PWF * OE$$

where LCC is Life Cycle Costs, PP is the purchase price (incl. installation costs) and OE is the operating expense.

The PWF (Present Worth Factor) is defined as

$$PWF = N * 1/(1 + r)^{N}$$

in which N is the product life and r is the discount (interest-inflation) rate.

In the Task 2 Report, chapter 4 we found an interest rate of 4% and an inflation rate of 2% resulting in a discount rate of 2%. For maintenance costs and electricity with 1,5% per year long-term price increase this is appropriate.

However, also in the same chapter we found a (long-term) annual price increase of 5.6% for gas and 8.2% for heating oil. This is much higher than inflation and for those two components we have to use Present Worth Factors based on a discount rate of -1.6% (gas) and -4.2% (oil) instead of +2%.

All fixed inputs for the LCC-calculation are give in Chapters 4 and 5 of the Task 2 Report, for the EU-25 average and –whenever possible—per EU Member State.

The table below gives a summary of the running cost parameters that will be used for the Base Case (average EU-25):

Table 2-6. Running costs fixed parameters for LCC (EU avg)

·		
Product Life (years) Rlife Discount rate Rdis	17 2%	years
Electricity rate per kWhe Rel Fuel rate per kWh Rgas Oil rate per kWh Roil Avg. Fuel per kWh Rfuel	0,15 0,047 0,061 0,049	€/ kWhe €/ kWh €/ kWh
present worth factor (in yrs)> Electr.rate increase/ yr. Relinc Gas rate increase/ yr. Rgasinc Oil rate increase/ yr. Roilinc Fuel rate increase/yr Rfuelinc	1,5% 5,6% 8,2% 5,9%	PWF (yrs) 14,3 19,7 25,6 20,3
Repair & maint./ yr. Rmaint	€ 180	14,3

The prices of the products and installation costs will be based on the data in Chapters 4 and 5 of the Task 2 report, but they are direct <u>variables</u> for the design options (Task 6) and will therefore be discussed in the next chapter.

3 SPECIFIC INPUTS

3.1 Materials (BOMs)

The bills of materials (BOMs) are constructed on the basis of the data supplied by the European Heating Industry Association (EHI) and adjusted by VHK.³

For the individual boilers the basis is the EHI-BOM for a "gas wall-hung non condensing boiler", which was used directly for the Medium-size boiler.

For the smaller categories (S, XS, XXS) the bill of materials was derived by reducing the material weight for copper, steel and aluminium with 30% and making some minor adjustments. For the Large (L) category the material weight of copper, steel and aluminium components was increased by 15%.

The bill of materials for the XXL category was derived from the EHI-BOMS for "Gas Floor Standing & Gas Jet Burner" and "Oil Jet Burner" boilers, by doubling the weight of the heat exchanger (cast iron and steel). The weight of all other materials increases by 20%. The total weight is checked with weights of similar products on the market. The XL category is mainly an average between the L and XXL category.

For the 3XL and 4XL category the weight are derived through an up scaling of the XXL class to the requested total weight of these boilers (based on product now on the market).

Table 3-1 Bills of Materials for Base Case (avg. new boiler) categories

Row	Mat/process		1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>Z</u>	<u>8</u>	<u>9</u>
nr		unit	XXS	<u>xs</u>	<u>s</u>	<u>M</u>	<u>L</u>	<u>XL</u>	XXL	<u>3XL</u>	<u>4XL</u>
4	PP (Plastics)	g	3.650	3.650	3.650	3.650	3.650	3.200	3.564	10.463	32.195
5	PS (Misc.)	g	350	350	350	350	350	100	84	247	760
10	ABS (Plastics ABS)	g	0	0	0	0	0	0	0	0	0
15	Rigid PUR	g	800	800	800	800	800	800	2.844	8.350	25.693
21	St sheet galv.	g	19.726	19.726	19.726	28.180	32.407	50.754	69.100	202.868	624.224
23	Cast iron	g	1.170	1.170	1.170	1.170	1.170	71.465	141.760	416.188	1.280.579
25	Stainless 18/8 coil	g	1.862	1.862	1.862	2.660	3.059	1.728	1.728	5.073	15.610
27	Al diecast	g	1.379	1.379	1.379	1.970	2.265	0	0	0	0
30	Cu tube/sheet	g	2.982	2.982	2.982	4.260	4.899	700	888	2.607	8.022
31	CuZn38 cast	g	1.650	1.650	1.650	1.650	1.650	500	564	1.656	5.096
98	avg. controller board	g	690	690	690	690	690	750	876	1.752	5.256
54	glass	9	0	0	0	0	0	0	0	0	0
		kg	34,3	34,3	34,3	45,4	50,9	123.0	221,4	650,0	2000,0

At a last minute request of The Commission size-classes 3XL and 4XL were added; figures are indicative.

The materials include spare parts (1%).

³ See MEEUP Product Cases Report, VHK for European Commission 2005.

3.2 Manufacturing phase

The inputs required to assess the environmental impacts for the manufacturing phase are generated automatically by the EcoReport. As metal scrap percentage we use the default 25%. Please note that for plastics the manufacturing impacts are included in the materials.

Table 3-2 gives the required inputs.

Table 3-2. Manufacturing inputs for BaseCases

Row	Mat/process		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
nr		unit	XXS	<u>xs</u>	<u>s</u>	<u>M</u>	L	<u>XL</u>	XXL	<u>3XL</u>	<u>4XL</u>
34	foundries Fe/Cu/Zn	g	2820	2820	2820	2820	2820	71965	142324	417844	1285675
35	foundries Al	g	1379	1379	1379	1970	2265	0	0	0	0
36	sheetmetal plant	g	19726	19726	19726	28180	32407	50754	69100	202868	624224
37	sheetmetal scrap	g	4932	4932	4932	7045	8102	12688	17275	50717	156056
53	PWB assembly	g	690	690	690	690	690	750	876	1.752	5.256

At a last minute request size-classes 3XL and 4XL were added; figures are indicative.

3.3 Distribution phase

The EcoReport requires the product volume as an input for transportation and warehouse. Other than that, there are two fixed impacts (multiplier=1) . See Table 3-3.

Table 3-3. Distribution inputs for BaseCases

Row	Mat/process		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
nr		unit	XXS	<u>xs</u>	<u>s</u>	<u>M</u>	<u>L</u>	<u>XL</u>	XXL	<u>3XL</u>	<u>4XL</u>
60	per m³ appliances	m³	0,08	0,1	0,12	0,15	0,15	0,5	1	2	6
61	per product	#	1	1	1	1	1	1	1	1	1
63	per m³ installed product	m³	0,08	0,1	0,12	0,15	0,15	0,5	1	2	6

At a last minute request size-classes 3XL and 4XL were added; figures are indicative.

3.4 Use Phase

The use phase consists of the energy consumption and the maintenance/repairs. For the latter we assume a total distance of 100 km for 17 years of maintenance. The spare parts were already included in the materials production.

But the most important is of course the energy consumption of the CH-boiler, based on a series of technical design features. The basis for the design features is the ECOBOILER Integrated Model, where we have defined design-settings for each category/ load profile that come as close as possible to the technical market segmentation as found in Chapter 3 of the Task 2 report.

An overview of these settings for XXS to 4XL boiler categories is given in Table 3-4 on the next page $^{4\,5}$.

The outcome of these settings for the annual energy consumption is given in Table 3-5.

Finally, in Table 3-6 the inputs for the EcoReport are summarized.

⁴ MTS reports that in their opinion fuel/air ratio controls used in Basecase appliances (= new LT wall hung boilers) are not pneumatic but atmospheric. Pneumatic devices are mainly used for condensing boilers and eventually for higher power LT boilers (>70 Kw) but they're not largely used.

⁵ In table 3-4 standby heat loss of 1% is given for all load profiles. DTI remarks that relatively speaking the standby losses could be lower for larger boilers.

Table 3-4. Design Inputs BaseCases

SIGN INPUT BASECASE	1	2	3	4	5	6	7	8	9
PUTS CH									
H-power class	1 -XXS (XX Small)	2 -XS (Xtra Small)	3 -S (Small)	4 -M (Medium)		6 -XL (Xtra Large)	7 -XXL (XX Large)	8 -3XL	9 -4XL
iler characteristics	6 -apartment new	2 -average new	5 -apartment existing	1 -average existing	3 -house existing	8 -new building (8 ap)	7 -exist. building (8 ap)	9 -high-rise avg. (20 ap)	10 -block avg. (60 ap)
wer input in kW*	10 kW	14 kW	19 kW	22 kW	29 kW	60 kW	115 kW	250 kW	750 kW
ndown ratio	33%	33%	33%	33%	33%	33%	33%	33%	33%
indby heat loss (% of Pnom)	1.0%	1.0%	1,0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
haby fleat loos (% of Frienr)	1,070	1,070	1,070	1,070	1,070	1,070	1,070	1,070	1,070
ady st. efficiency %	5 -80/80/80/80	5 -80/80/80/80	5 -80/80/80/80	5 -80/80/80/80	5 -80/80/80/80	5 -80/80/80/80	5 -80/80/80/80	5 -80/80/80/80	5 -80/80/8
(dewpoint)	1-gas	1							
fuel mix control	2 -pneumatic	2 -pneum							
c. pump power	5 -65W		6 -95W	6 -95W	6 -95W	7 -200W		8 -600W	
power	2 -P=630W		3 -P=940W	3 -P=940W	3 -P=940W	5 -P=60W		7 -P=150W	
'U power sb/on	3 -P=6/8W		4 -P=10/12W	4 -P=10/12W	4 -P=10/12W	7 -P=28/30W	8 -P=56/60W	9 -P=72/80W	
ntrols power sb/on	1 -P=0/10W	3 -P=0/18W	3 -P=0/18W	4 -P=0/36W	5 -P=0/				
	4	4	4	4	4	4	4	4	4
mb. air intake	1 -room sealed		1 -room sealed						
ler mass (empty), kg	34 kg	34 kg	34 kg	45 kg	51 kg	110 kg	221 kg	650 kg	2000 kg
ter content in kg	1,5 kg	1,5 kg	1,5 kg	4,0 kg	6,0 kg	12,0 kg	20,0 kg	60,0 kg	200,0 kg
velope volume in m3 ise level in dB-A	0,08 m3 43 dB-A	0,10 m3 43 dB-A	0,12 m3 43 dB-A	0,15 m3 43 dB-A	0,17 m3 43 dB-A	1,00 m3 50 dB-A	1,00 m3 50 dB-A	2,00 m3 50 dB-A	6,00 m3 50 dB-A
ise ievei iii db-A	43 UB-A	43 UD-A	43 UD-A	43 UD-A	43 UD-A	30 UD-A	30 UD-A	30 UB-A	30 UB-A
ntrollers									
to-timer control	yes	yes	yes	yes	yes				
ve control	2 -RTV 2K		2 -RTV 2K	2 -RT\					
ler temp control	6 -on/off RT	4 -fixed BT	4 -fixed BT	4 -fixed BT	4 -fixed				
ectronic optimiser	no		no	no	no	no		no	
toset weather control	N/A	N/A	no	N/A	N/A	N/A	no	no	
lar (for combi only)									
***	N/A	1 glazad	3 -vacutube	3 -vacut					
lector type lector surface m2	0,0		0,0	0,0	0,0	0,0		0,0	
k position	N/A		1 -indoors	1 -indoors	1 -indoors	1 -indoors		1 -indoors	
I-fraction served	0%		0%	0%	0%	0%		0%	
back-up heater CH?	no		no	no	no	no		no	
back-up ficater of fi	110	110	IIO	110	110	110	110	110	
at pump (HP)									
erence type	1 -El. brine/ water 0/50	3 -El. air/ water 7/50	3 -EI. air/ water 7/50	3 -EI. air/ water 7/50	3 -El. air/ water 7/50	3 -El. air/ water 7/50	2 -EI. water/ water 10/5	2 -EI. water/ water 10/50	2 -El. water/ water
wer nominal in kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0 kW	0,0
P nominal 0/50	0,00	0,00	0,00	2,50	0,00	3,50		3,70	
tio CH : DHW	100%		80%	80%	80%	80%	80%	80%	
I-fraction served	100%	0%	100%	100%	100%	50%	100%	100%	
back-up heater CH?	no								

Table 3-5. Annual Energy Consumption BaseCases

DESIGN INPUT BASECAS	SE	1		2		3		4		5		6		7		8		9	
INPUTS CH																			
CH-power class		1 -XXS (XX Sma		2 -XS (Xtra Sm	all)	3 -S (Small)		4 -M (Medium)		5 -L (Large)		6 -XL (Xtra Larg	•	7 -XXL (XX Large	,	8 -3XL		9 -4XL	
		6 -apartment ne	W	2 -average new		5 -apartment exist	ing	1 -average existing	ig	3 -house existing	7	8 -new building (8 ap)	7 -exist. building	(8 ap)	9 -high-rise avg. (2	?0 ap)	10 -block avg. (60 ap)
MAIN ENERGY OUTPUTS																			
Net heating efficiency		53%		54%		52%		54%		55%		44%		45%		43%		43%	
Primary energy consumption	1	4422 k	:Wh/a	6873 kV	Vh/a	9368 k	Nh/a	13827 kV	Vh/a	19095 k	(Wh/a	45965 H	(Wh/a	93407 k	:Wh/a	246159 kV	Vh/a	739894 k	Wh/a
of which fuel (primary kWh	GCV)	4100 k	:Wh/a	6470 kV	Vh/a	8814 k\	Nh/a	13247 kV	Vh/a	18490 k	(Wh/a	43118	(Wh/a	89492 k	:Wh/a	236126 kV	Vh/a	710017 k	Wh/a
of which electricity (primary	kWh)	322 k	:Wh/a	403 kV	Vh/a	555 k ¹	Nh/a	580 kV	Vh/a	605 k	(Wh/a	2.848	(Wh/a	3.915 k	:Wh/a	10.033 kV	Vh/a	29.877 k	Wh/a
ANNUAL SPACE HEAT EN																			
TOTAL	kWh/a	4422	100%		100%	9368	100%	13827	100%	19095	100%		100%		100%		100%		100
rset -	kWh/a	1653	37%		39%	3799	41%	6056	44%	8660	45%		43%		45%		43%		4
mass intrans	kWh/a kWh/a	423	10% 6%		10% 5%	788	8% 3%	1106	8% 2%	1454	8% 2%		1% 0%		0% 0%		0% 0%	2938 0	
fluct (cntrl)	kWh/a	277 383	9%		5% 9%	263 642	3% 7%	318 992	2% 7%	401 1359	2% 7%		7%		6%		6%	41905	
strat(emit)	kWh/a	241	5%		5%	415	4%	629	5%	918	5%		5%		4%		4%	30565	
Distr. loss	kWh/a	394	9%		9%	846	9%	1131	8%	1474	8%		14%		15%		18%	129442	
teady st.	kWh/a	628	14%		15%	1752	19%	2633	19%	3674	19%		18%		19%		19%	139556	
tart/stop	kWh/a	21	0%		0%	43	0%	44	0%	51	0%		0%		1%		1%	4543	
tby heat	kWh/a	79	2%		2%	265	3%	338	2%	499	3%		4%		6%		6%	43791	
lectric	kWh/a	322	7%	403	6%	555	6%	580	4%	605	3%	2848	6%	3915	4%	10033	4%	29877	
Credit solar	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	
Credit HP	kWh/a	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	
let heating efficiency	%	53%		54%		52%		54%		55%		44%		45%		43%		43%	
ross heat load	kWh/a	2.965		4.508		6.052		8.929		12.292		23.766		48.638		124.389		371.657	
et heat load	kWh/a	2.354		3.699		4.850		7.480		10.515		20.284		42.195		106.738		320.215	
et load per unit floor area	kWh/m2	56		68		141		160		180		73		175		145		146	
CH syst. Efficiency	%	61%		62%		60%		62%		63%		51%		52%		50%		50%	

Table 3-6. Summary Use Phase inputs

Row	Mat/process		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
nr		unit	XXS	<u>xs</u>	<u>s</u>	<u>M</u>	<u>L</u>	<u>XL</u>	XXL	<u>3XL</u>	4XL
65	Electricity	kWhe/a	129	161	222	232	242	1.139	1.566	4.013	11.950
	Fuel	kWh/a	4.422	6.873	9.368	13.827	19.095	45.965	93.407	246.159	739.894
86	Mini-van diesel	km	100	100	100	100	100	100	100	100	100

Please note that the Base Case assessment relates to <u>new</u> boilers. For an impact analysis of the <u>existing</u> EU boiler stock see the Task 7.2 report.

The variation of design features is limited between the categories, which is fairly close to real-life. Basically, the differences can be found between typical individual boilers (XXS to L) on one hand and collective/commercial boilers (XL, XXL) on the other hand. We therefore anticipate that in Task 6 we will concentrate on just two categories --M and XXL—and extrapolate these results for the other categories.

The M and XXL Base Cases use the following settings:

- Inputs power as indicated. On average 22 kW for individual boilers (M), 100 kW for the collective boiler (XXL),
- Combustion air intake is room-sealed (type C)
- Turndown ratio: 33% (smallest power as a fraction of nominal)
- Steady State Efficiencies on Gross Calorific Value: 80/80/80% for 60/80°C regime at full power, 30/50 regime at full power, 60/80 regime at minimum power, 30/50 regime at minimum power. The collective boiler starts from 76% steady state efficiency.
- Standby heat energy losses: 1% of Pnom.
- No pilot flame (electronic ignition)
- Pump 45 W, fan 9-40 W each, CPU power 10/12 W for standby/"on", power of gas valve etc. 10/10 W for standby/"on". No night setback for pump. Pump stops 10 minutes after "burner-off". Prepurge time 25 seconds.
- Consequently the electricity consumption in standby (in W electric) is 20 W, at maximum (nominal) load 112 W and at minimum load 110 W. The primary energy factor for power plant losses and distribution is 2,5 (1 kWh electric= 2,5 kWh primary).
- On/off room thermostat for individual boilers, with timer-control (regime 19/18/21 for Zone 1/2/3) but without electronic optimiser (reheat power 100%). Fixed boiler thermostat (70°C average) for collective boilers.
- For individual boilers: Valve controllers: TRVs 2K (thermostatic radiator valves with a 2K bandwidth and a 20 minute delay) in bed- and bathroom. No valves in reference room (living room and kitchen), because this is controlled by the room thermostat. The system is not hydraulically not optimised and has a bypass-mix of 30% (mix between return and feed flows).
- For collective boilers: TRVs 2K in all rooms.
- Pump set at fixed flow 1000 ltrs./h.
- The air-fuel mixer of the heat generator is pneumatic with an air factor of 1,4. Consequently, the fuel loss factor is set at 1,5% (at 14.000 cycles equivalent) and the corrected dewpoint for the default fuel (gas) is set at 50°C.
- The boiler mass, water content, envelope volume will be indicated per BaseCase. An average value is 60 kg boiler mass and an average water content of 4 ltr. for an

individual boiler. The envelope will then be smaller than $0.15~\text{m}^3$. The default noise level is 45~dBA.

3.5 End-of-Life phase (EOL)

For the End-of-Life we assume the EcoReport default scenario:

Table 3-7. Default EOL scenario

Landfill (not recovered) 5% of total weight * [row 89]
Incinerated (plastics & PWB fraction -(re-used + recycled)) * [row 91]
Cost of plastics recycling (re-used + recycled fraction) * [row 92]
Plastics: Re-used (closed loop) 1% of plastics fraction
Plastics: Materials recycling 9% of plastics fraction
Plastics: Thermal recycling 90% of plastics fraction
Electronics easy to assembly YES: electronics fraction & manuf. [=row 98] * 20%
Metals & Misc. 95% recycled (value already incorporated)

As a consequence, the following inputs will be used for the EOL:

Table 3-8. EOL Inputs Base Cases

Row	Mat/process		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
nr		unit	XXS	<u>xs</u>	<u>s</u>	<u>M</u>	L	<u>XL</u>	XXL	<u>3XL</u>	<u>4XL</u>
93	Metals recycled	g	27331	27331	27331	37896	43178	118889	203338	596972	1836854
94	Plastics, Thermal recyc	_									1000001
95	Tidottoo, Tilottilai Tooyo	g. c			le-used pla		•	oo acca ,	(diopidooo	O <i>)</i>	
4	PP	g	35	35	35	35	35	30	34	100	309
5	PS	g	3	3	3	3	3	1	1	2	7
15	PUR	g	8	8	8	8	8	8	27	80	246
96	Plastics, Recycling: cre heat recovery)	_	27 MJ (displ	aces wood	d) + 50% c	of feedsto	ock energ	y & GWP	of plastic	s (less ch	ance
4	PP	g	312	312	312	312	312	274	305	894	2753
5	PS	g	30	30	30	30	30	9	7	21	65
15	PUR	g	68	68	68	68	68	68	243	714	2197
97	Electronics: if designed	for ea	sy separate	shredderir	ng credit i	s 20% of	production	on impac	t compone	ents and r	naterials
98		g	131 1	31 1	31 1	31 1	131 ′	143	166	332 9	998
	Default EOL scenario				faterials b	alance					
	disposal	g	6145	6145	6145	6701	6979	10362	17037	50885	156571
	recyc/re-use	g	27918	27918	27918	38483	43765	119421	204121	599115	1843429
	,			<u> </u>							2000000
	total	g	34062	34062	34062	45183	50743	129783	221158	650	000

At a last minute request size-classes 3XL and 4XL were added; figures are indicative.

Please note that the last 4 rows of Table 3-8 --together with the BOMs- give the materials balance.

3.6 LCC Inputs: Prices and installation costs

The prices of the BaseCases are derived from Chapters 4 and 5 of the Task 2 Report.

The results are given in Table 3-10 on the next page.

3.7 EU Totals: Markets by Category

For the calculation of the EU Totals an estimate of the relative share and absolute sales numbers per category is needed. For this estimate we have used the data in Chapter 3 of the Task 2 report. The main source table is given below as a reminder (originally Table 3-11 in Chapter 3, Task 2 report).

Table 3-9 . EU 2004 Boiler Market, segmented by sector, application, boiler type and capacity (VHK analysis on the basis of BRGC data 2006)

SECTOR	RESIDE (incl. be		hared	with sn	nall nor	n-resid	ential)					NON-R	ESIDE	NTIAL	TOTAL
APPLICATION	I		INI	DIVIDU	AL			CO	LLECT	IVE	TOTAL		٦	TOTAL	
TYPE		gas	wh	ç	jas fs c		otal ndiv.	gas fs	oil jet	total Coll.		gas fs	= oil jet		
Output in kW	8-15	16-25	26+	tot wh	< 35	< 30		> 35	> 30			> 35	>.30		
Austria	4	23	17	44	4	9	57	1	2	3	59	1	2	8	67
Belgium	8	61	36	105	17	22	144	4	9	13	157	5	11	13	170
CzechRep.	12	12	61	85	8	0	93	2	0	2	95	2	1	1	96
Denmark	17	2	2	21	0	5	25	0	0	1	26	0	0	0	26
Estonia	_	-	-	2	0	1	3	0	0	0	3	0	0	0	3
Finland	_	-	-			12	12	0	0	0	12	0	0	9	21
France	_	430	107	537	64	153	754	7	16	23	777	9	19	38	815
Germany	72	359	64	495	46	117	658	16	38	54	711	19	47	47	758
Greece	0	8	3	12	1	27	39	0	18	18	57	0	22	29	86
Hungary	9	69	8	86	8	1	95	5	0	5	101	6	0	0	101
Ireland	20	35	3	58	2	35	96	0	5	5	101	0	6	10	111
Italy	1	1084	145	1230	59	21	1310	3	12	14	1324	3	14	14	1338
Latvia	_	-	-	6	1	1	7	0	0	0	7	0	0	0	7
Lithuania	-	-	-	8	3	1	12	0	0	0	12	0	0	3	15
Netherlands	210	153	44	408	2	0	410	3	0	3	413	3	0	6	419
Poland	2	114	11	126	8	7	141	4	5	9	150	5	6	6	157
Portugal	_	30	3	33	0	4	37	0	5	6	43	1	7	10	53
Slovakia	2	6	18	26	13	0	39	2	0	2	42	3	0	0	42
Slovenia	1	6	1	8	1	10	18	0	0	0	18	0	0	4	22
Spain	3	371	64	438	1	24	463	3	34	37	500	4	42	42	542
Sweden	0	1	-	1	0	0	1	0	1	1	3	0	1	6	9
UK (>44 kW)	203	1044	318	1565	59	92	1715	4	6	10	1726	5	8	75	1801
EU	564	3810	904	5295	296	541	6132	51	152	203	6335	67	186	253	6588
avg. kW	12	22	29	22,1	22	22	22,1	120	93	100	25	120	93	100	27
mln. kW	6,8	83,8	26,2	116,8	6,5	11,9	135,2	6,1	14,2	20,2	155	8,0	17,3	25,3	181

Table 3-10. Prices and Installation Costs BaseCases PER UNIT

BASECASES	1 1 -XXS (XX Small)	2 -XS (Xtra Small)	3 -S (Small)	4 4 -M (Medium)	5 5 -L (Large)	6 6 -XL (Xtra Large)	7 -XXL (XX Large)	8 -3XL	9 9 -4XL
PRODUCT PRICE break down									
OEM Subass. Costs (Task 2, Ch. 5) Heat exchanger group El. controls group Burner group Fuel controls group CH-return group CH-supply group Fan group Casing Condensate collect Hot water group Packaging etc. Extra oil-fired (*0,11) Subtotal OEM Labour Overhead total MSP Ex wholesale Ex installer excl. VAT BOILER consumer street price incl. V. CONTROLLERS incl. VAT INSTALLATION (Labour, materials, VAT) subtotal Boiler (all in)	2 6 8 1.0 AT 1.3	1.03	100	123 286 818 1.063 1.268 1.509	131 305 872 1.133 1.351 1.608	319 745 2.129 2.768 3.300 3.927 0 2.572	432 1.008 2.881 3.745 4.466 5.314 0 3.857	1.9 5.6	2.595 853 2.595 6.055 885 17.300 990 22.490 311 26.815 31.909 0 0 043 9.001
SOLAR installation incl. VAT HEAT PUMP materials incl. VAT HEAT PUMP installation incl. VAT		0 0	0 0		0 0		0 0		0 0 0
TOTAL PURCHASE	2.2	27 2.38	2.504	2.724	2.945	6.498	9.171	15.6	40.910

In the Table 3-9 we have split the small "gas fs" and "oil jet" boilers over the "gas wh" categories proportionally. This gives us a subdivision of individual boilers in 3 categories: $8-15 \, \mathrm{kW}$, $16-25 \, \mathrm{kW}$, $26+ \, \mathrm{kW}$. The first category covers XXS (10 kW) and XS-size (14 kW). From the RT2000 database (Table 3-5 of Chapter 3, Task 2) we know that the XXS-size is a small segment. We will set this category at around 2% of the market (130.000 units per year). The remainder will be XS, which comes down to 450.000 units.

The subdivision of the 16-25 kW we will estimate that the S-size (19 kW=16-20 kW) constitutes around 25% or 1 million units. This leaves 3 million units for the M-size (22 kW= range 20-25 kW).

For the 26+ kW wall-hung gas category, the RT2000 database shows that 65% of units is in the size <33 kW, which would qualify for the L category (29 kW= range 26-32 kW) and represents a segment of 650.000 units annual sales.

This leaves 350.000 wall-hung gas-fired units for the category range 33-70 kW (roughly XL= 86 kW). As is shown in Table 3-10 of Chapter 3/Task 2, there are also around 67.000 gas-fired floor standing units and 233.000 oil jet burners in that category. With that, the XL category is as large as the L category: 650.000 units.

The category of 70 to 120-150 kW (XXL=130 kW) the data show around 100.000 wall hung units (probably mostly 80-100 kW) plus another 17.000 gas floor standing units and 55.000 oil jet burners. In total this is around 177.000 units (\pm 20%).

The remainder, not covered by the categorisation, are boilers with a heat input over 120-150 kW. These are around 27.000 gas-fired floor standing units and some 50.000 oil-fired boilers, totalling 77.000 units. If the subdivision of floor standing gas boilers applies, around 55% (40.000 units) are between 120 and 350 kW. Around 37.000 boilers are in the range >350 kW.

Table 3-11. Estimated market segmentation of BaseCases

	indicative				
	range	Unit sales	Share	oil units	
	heat input (kW)	* 1000	of total	* 1000	oil share
xxs	<10 kW	150	2,3%	13	8,8%
XS	10-15 kW	500	7,6%	44	8,8%
S	16-20 kW	1000	15,2%	88	8,8%
М	21-25 kW	3400	51,5%	300	8,8%
L	26-32 kW	650	9,9%	57	8,8%
XL	33-70 kW	650	9,9%	267	41,0%
XXL	70-150 kW	170	2,6%	51	30,0%
150-350 kW	150-350 kW	40	0,6%	26	65,0%
350+ kW	>350 kW	37	0,6%	24	65,0%
Total		6597	100,0%	871	13,2%

The XXS-XXL categories cover over 98% of unit sales and around 88% of installed capacity (in total kW).

In the categories XXS-L we estimate the share of oil-fired boilers at 8,8%. In the categories XL the share is 41% and with XXL 30%. In the largest categories above 150 kW input the share of oil fired boilers is around 65% according to the data in the Task 2 Report.

4 ENVIRONMENTAL IMPACT

Annex A gives an example of the EcoReport for a Medium sized boiler.

The table on the next page gives the outcome for all Base Cases.

Main findings are that, depending on the BaseCase size class, emissions to air primarily occur in the use phase according following table:

- 98 to 99,9% of all CO2 emissions relate to the use phase;
- 92 to 99% of all SOx emissions relate to the use phase;
- all VOC emissions relate to the use phase;
- 20 35% of POP (persistent organic pollutants) relate to the use phase;
- 30 90% of heavy metal emission relate to use phase;
- 30 85% of all PAH's relate to the use phase;
- around 50% of all PM emissions relate to the use phase.

21

Table 4-1. Environmental impacts BaseCases

BASECASES		1 1 -XXS (XX Sma	all)	2 2 -XS (Xtra Sm	all)	3 3 -S (Small)		4 4 -M (Medium)		5 5 - L (Large)		6 6 -XL (Xtra Larg	je)	7 7 -XXL (XX Large	e)	8 8 -3XL		9 9 -4XL	
ENVIRONMENTAL IMPAC	ENVIRONMENTAL IMPACT PER UNIT OVER LIFE																		
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE
TOTAL of which	kg	34,1		34,1		34,1		45,2		50,7		129,8		221,2		649,4		1997,9	
Disposal	kg	6,1		6,1		6,1		6,7		7,0		10,4		17,0		49,6		152,6	
Recycled	kg	27,9		27,9		27,9		38,5		43,8		119,4		204,1		599,8		1845,3	
OTHER RESOURCES																			
Total Energy (GER)	GJ	269,4	266,7	416,0	413,3	566,0	563,3	831,8	828,4	1145,3	1141,6	2832,8	2827,2	5689,3	5680,7	14843,3	14819,8	46177,2	46105,5
of which, electric(in primary)	GJ	23,6	23,0	29,4	28,8	40,2	39,6	42,2	41,4	44,0	43,2	204,5	203,3	281,1	279,5	720,5	716,3	2145,8	2133,2
Water (process)	m3	2,0	1,5	2,4	1,9	3,1	2,6	3,3	2,8	3,4	2,9	14,1	13,6	19,4	18,6	49,5	47,8	147,6	142,2
Water (cooling)	m3	61,7	61,3	77,1	76,7	106,0	105,6	110,9	110,4	115,7	115,2	543,0	542,2	746,6	745,5	1913,6	1910,3	5698,9	5688,6
Waste, non-haz./ landfill	kg	5,3	0,5	5,5	0,7	5,7	0,9	5,8	1,0	5,8	1,0	9,0	4,7	12,9	6,4	34,6	16,5	104,8	49,2
Waste, hazardous/ incineral	tec kg	98,0	26,7	104,7	33,3	117,3	45,9	146,9	48,0	162,7	50,1	369,1	235,8	521,2	324,1	1407,6	830,6	4248,3	2473,3
EMISSIONS TO AIR																			
GHG in GWP100	tCO2	15,1	14,9	23,4	23,2	31,8	31,6	47,0	46,8	64,9	64,6	176,0	175,6	344,4	343,7	859,7	857,9	3095,7	3090,2
AP Acidification	kgSOx	12,4	11,4	17,1	16.0	23,0	22,0	29,6	28,3	37,2	35.8	181,4	179,9	289,2	286.9	593,3	587,2	3527,8	3508,9
VOC Volatile Organic Comp	•	0,2	0,2	0,3	0,3	0,4	0,4	0,6	0,6	0,8	0.8	2,6	2,6	4,9	4,8	11,5	11,4	49,1	48,6
POP Persist.Organic Poll.	mg i-Teg	0,9	0,2	0,9	0.2	1,0	0,3	1,3	0.3	1,4	0.3	3,3	1,3	4,8	1,8	13,4	4,7	40,8	14,0
HMa Heavy Metals	mg Ni	1,3	0,4	1,4	0,5	1,6	0,7	1,8	8,0	2,0	0,8	4,7	3,5	6,5	4,8	17,2	12,3	51,6	36,6
PAHs	mg	0,2	0,1	0,3	0,1	0,3	0,1	0,3	0,2	0,3	0,2	0,6	0,5	0,9	0,7	2,1	1,8	6,2	5,4
PM Particulate Matter	kg	2,1	1,1	2,2	1,2	2,4	1,3	2,7	1,4	2,9	1,5	8,0	4,2	13,3	6,1	29,6	11,7	117,3	62,7
EMISSIONS TO WATER																			
HMw Heavy Metals	g Hg/20	0,7	0,1	0,8	0,2	0,8	0,3	1,0	0,3	1,1	0,3	2,0	1,3	2,7	1,8		4,6	21,1	13,8
EP Eutrophication	g PO4	12,4	0,7	12,6	0,9	12,9	1,2	15,7	1,3	17,1	1,3	23,2	6,3	31,5	8,6	85,5	22,0	260,3	65,6

5 LIFE CYCLE COSTS

An overview of the lifecycle costs is given in Table 5-1

The energy costs over life vary from 47% of total LLC costs for a basecase XXS boiler to 97% for a basecase 4XL boiler.

Table 5-1. Life Cycle Costs and Annual Expenditure PER UNIT

BASECASES	1 1 -XXS (XX Small)	2 2 -XS (Xtra Small)	3 -S (Small)	4 -M (Medium)	5 -L (Large)	6 -XL (Xtra Large)	7 7 -XXL (XX Large)	8 -3XL	9 -4XL
LCC break down									
Product Price	€1.255	€1.348	€1.410	€1.509	€1.608	€3.927	€5.314	€10.485	€31.909
Installation Fuel energy (gas, oil)	€972 €4.009	€1.033 €6.328	€1.094 €8.620	€1.215 €12.956	€1.337 €18.083	€2.572 €42.169	€3.857 €87.522	€5.143 €230.929	€9.001 €694.390
Electricity	€276	€3.325	€8.020	€12.930	€519	€2.442	€3.357	€8.603	€25.620
Repair & Maintenance	€2.573	€2.573	€2.573	€2.573	€2.573	€3.859	€5.145	€6.431	€7.718
TOTAL LCC	€9.085	€11.627	€14.172	€18.750	€24.119	€54.968	€105.196	€261.592	€768.637
Annual expenditure									
Product Price	€74	€79	€83	€89	€95	€231	€313	€617	€1.877
Installation	€57	€61	€64	€71	€79	€151	€227	€303	€529
Fuel energy (gas, oil) Electricity	€213 €19	€331 €24	€451 €33	€666 €35	€919 €36	€2.213 €171	€4.496 €235	€11.850 €602	€35.617 €1.793
Repair & Maintenance	€180	€180	€180	€180	€180	€270	€360	€450	€540
TOTAL avmanditura/a	6542	6675	6040	64.044	64 200	62.020	GE 024	642.024	640.250
TOTAL expenditure/a	€543	€675	€812	€1.041	€1.309	€3.036	€5.631	€13.821	€40.356

EU Totals

The table 6.1 on the next page shows the total environmental impact of the products sold in 2005 over their lifetime, i.e. the period between 2005 and 2022. One could also say that it is the total environmental impact caused by the buyers in 2005 (c.p.).

In that sense, the categories XXS-4XL will consume almost 9.500 PJ primary energy per year and emit 570 MtCO2 equivalent, 479 kt SOx equivalent, etc. over their life.

Table 6.2 shows the total life cycle costs that these buyers in 2005 have caused. In fact, these 6,9 mln. buyers have "signed a check" to spend 193 billion (193.000 million) Euro over the next 17 years (figures in NPV⁶). Of this sum, only about 23 billion (12%) are costs for the purchase and installation. The rest are running costs, of which almost 151 billion Euro energy costs.

Annually -in current money units and including the write-offs—they will spend over 10 billion Euro, of which around 8 billion Euro in energy costs.

When looking at costs and impacts per size, it is not surprising that the category with the highest unit sales (Medium-size, 3,4 mln.= 50% of sales) is responsible for most impact (ca. 30%). It is perhaps more surprising that the second in row is the 4XLcategory (0.037 mln. units = 0.5% of sales) with around 18% of the total impact.

This calculation of totals is a first step towards the scenario analysis, which will take place in Task 7.2.

⁶ Net Present Value

Table 6.1. Environmental Impact BaseCases sold in 2005 over their product life (17 years)

		1 -XXS (XX Sma	all)	2 -XS (Xtra Sn	nall)	3 -S (Small)		4 -M (Mediun	2)	5 -L (Large)		6 - YI / Ytra I a	rge)	7 -XXL (XX La	rae)	8 -3XL		9 -4XL		NEW TOTAL EU	
Units sales/a * 1000: Total 6597		150	<i>,</i>	500	ianj	1000		3400	,	650		650	ige)	170	gc/	40		37		TOTALLO	
IMPACT CATEGORY																					
MATERIALS		TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE	TOTAL	USE
TOTAL kt of which		5		17		34		154		33		84		38		26		74		465	
Disposal kt		1		3		6		23		5		7		3		2		6		55	
Recycled kt		4		14		28		131		28		78		35		24		68		410	
OTHER RESOURCES																					
Total Energy (GER) PJ		40	40	208	207	566		2828	2817	744	742		1838	967	966	594	593	1709	1706	9498	
of which, electric(in primary) PJ		4	3	15	14	40	40	143	141	29	28	133	132	48	48	29	29	79	79		514
Water (process) * mln. m3		0	0	1	1	3	3	11	9	2	2	9	9	3	3	2	2	5	5	38	34
Water (cooling) * mln m3 Waste, non-haz,/ landfill kt		9	9	39 3	38	106	106	377 20	375	75	75	353 6	352	127	127	77	76	211	210	1373 46	1370
Waste, non-haz./ landfill kt Waste, hazardous/ incinerateckt		15	0	52	0 17	6 117	46	499	3 163	4 106	33	240	153	2 89	55	56	33	4 157	2 92		12 595
Waste, Hazardous/ Incinerate: Kt		15	4	52	17	117	40	499	103	100	33	240	155	09	55	56	33	157	92	1331	595
EMISSIONS TO AIR																					
GHG in GWP100 MtCC)2	2	2	12	12		32	160	159	42	42	114	114	59	58	34	34	115	114		568
AP Acidification ktSO:	х	2	2	9	8	23	22	101	96	24	23	118	117	49	49	24	23	131	130	479	470
VOC Volatile Organic Comp. kt		0	0	0	0	0	0	2	2	1	1	2	2	1	1	0	0	2	2	8	8
POP Persist.Organic Poll. g i-Te	eq	0	0	0	0	1	0	4	1	1	0	2	1	1	0	1	0	2	1	12	3
HMa Heavy Metals t Ni		0	0	1	0	2	1	6	3	1	1	3	2	1	1	1	0	2	1	17	9
PAHs t Ni		0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	3	2
PM Particulate Matter kt		0	0	1	1	2	1	9	5	2	1	5	3	2	1	1	0	4	2	28	14
EMISSIONS WATER																					
HMw Heavy Metals t Hg/2	20	0	0	0	0	1	0	3	1	1	0	1	1	0	0	0	0	1	1	8	3
EP Eutrophication t PO4		2	0	6	0	13	1	53	4	11	1	15	4	5	1	3	1	10	2	119	16
		_																			

Table 6.2. Life Cycle Costs and Annual Expenditure for BaseCase units sold in 2005 over their product life (17 years)

		1 -XXS (XX Small)	2 -XS (Xtra Small)	3 -S (Small)	4 -M (Medium)	5 -L (Large)	6 -XL (Xtra Large)	7 -XXL (XX Large)	8 -3XL	9 -4XL	TOTAL
Units sales/a * 1000: Total 6597		150	500	1000	3400	650	650	170	40	37	
LCC break down											
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance	M€ M€ M€ M€ M€	188 146 601 41 386	674 517 3.164 173 1.286	1.410 1.094 8.620 476 2.573	5.130 4.132 44.049 1.691 8.747	1.045 869 11.754 337 1.672	2.552 1.672 27.410 1.587 2.508	903 656 14.879 571 875	419 206 9.237 344 257	1.181 333 25.692 948 286	13503 9624 145405 6168 18589
Annual expenditure											'
Product Price Installation Fuel energy (gas, oil) Electricity Repair & Maintenance TOTAL expenditure/a	M€ M€ M€ M€ M€	11 9 32 3 27	40 30 165 12 90	83 64 451 33 180	302 243 2.263 118 612	61 51 597 24 117	150 98 1.438 111 176	53 39 764 40 61	25 12 474 24 18	69 20 1.318 66 20 1.493	794 566 7503 432 1301 0 10596

ANNEX A: ECOREPORT EXAMPLE

INPUTS: Medium- Sized Boiler

Version 5 VHK for European Commission 28 Nov. 2005

ECO-DESIGN OF ENERGY-USING PRODUCTS

EuP EcoReport: INPUTS

Nr	New Gas Wall Hung Non Condensing Combi "Medium"		apr-07	R. v. Holsteijn		
	Products			vhk		
Pos nr	MATERIALS Extraction & Production Description of component	Weight in g	Category Click &select	Material or Process select Category first!		
1	Aluminium die cast	1970,0	4-Non-ferro	27-Al diecast		
2	Stainless steel	2660,0	3-Ferro	25-Stainless 18/8 coil		
3	Electronics	690,0	6-Electronics	98-controller board		
4	Cast iron	1170,0	3-Ferro	23-Cast iron		
5	Plastics	3650,0	1-BlkPlastics	4-PP		
6	Plastics ABS	, -	1-BlkPlastics	10-ABS		
7	Copper	4260,0	4-Non-ferro	30-Cu tube/sheet		
8	Brass	1650,0	4-Non-ferro	31-CuZn38 cast		
9	Insulation	800,0	2-TecPlastics	15-Rigid PUR		
10	Insulation Mineral Wool					
	Steel	28180,0	3-Ferro	21-St sheet galv.		
	Others	350,0	1-BlkPlastics	5-PS		
13	TOTAL	45380				
Pos	MANUFACTURING	Weight	Percentage	Category index (fixed)		
nr	Description	in g	Adjust			
	OEM Plastics Manufacturing (fixed)	4800		20		
	Foundries Fe/Cu/Zn (fixed)	2820		34		
	Foundries AI/Mg (fixed) Sheetmetal Manufacturing (fixed)	1970		35		
7114	Sneetmetal Manutacturing (1744)			36 53		
		35100				
205	PWB Manufacturing (fixed)	0		36 53		
205 206			25%			
205 206 207	PWB Manufacturing (fixed) Other materials (Manufacturing already included) Sheetmetal Scrap (Please adjust percentage only)	0 690	25%	53 37		
205 206 207 Pos	PWB Manufacturing (fixed) Other materials (Manufacturing already included) Sheetmetal Scrap (Please adjust percentage only) DISTRIBUTION (incl. Final Assembly)	0 690	25% Answer	53		
205 206 207 Pos nr	PWB Manufacturing (fixed) Other materials (Manufacturing already included) Sheetmetal Scrap (Please adjust percentage only) DISTRIBUTION (incl. Final Assembly) Description	0 690	Answer	53 37 Category index (fixed)		
205 206 207 Pos nr 208	PWB Manufacturing (fixed) Other materials (Manufacturing already included) Sheetmetal Scrap (Please adjust percentage only) DISTRIBUTION (incl. Final Assembly) Description Is it an ICT or Consumer Electronics product <15 kg ?	0 690	Answer	53 37 Category index (fixed) 59 0		
205 206 207 Pos nr 208	PWB Manufacturing (fixed) Other materials (Manufacturing already included) Sheetmetal Scrap (Please adjust percentage only) DISTRIBUTION (incl. Final Assembly) Description	0 690	Answer	53 37 Category index (fixed)		

				64 0
Pos	USE PHASE		unit	Subtotals
nr	Description			
211	Product Life in years	17	years	
	<u>Electricity</u>			
212	On-mode: Consumption per hour, cycle, setting, etc.	0	kWh	0
213	On-mode: No. Of hours, cycles, settings, etc. / year	0	#	
214	Standby-mode: Consumption per hour	0	kWh	0
215	Standby-mode: No. Of hours / year	0	#	
216	Off-mode: Consumption per hour	0	kWh	0
217	Off-mode: No. Of hours / year	0	#	
	TOTAL over Product Life	2,39	MWh (=000 kWh)	65
	<u>Heat</u>			
218	Avg. Heat Power Output	0	kW	
219	No. Of hours / year	0	hrs.	
220	Type and efficiency (Click & select)	89,5%		69-Gas, atmospheric 90
	TOTAL over Product Life	665,56	GJ	
	Consumables (excl, spare parts)			material_
221	Water	0	m³/year	83-Water per m ³
	Auxilliary material 1 (Click & select)	0	kg/ year	85-None
	Auxilliary material 2 (Click & select)	0	kg/ year	85-None
	Auxilliary material 3 (Click & select)	0	kg/ year	85-None
	Administry material o (Glor & Solest)		ng, you.	oo itolio
	Maintenance, Repairs, Service			
225	No. of km over Product-Life	100	km / Product Life	86
226	Spare parts (fixed, 1% of product materials & manuf.)	454	g	
	L			
Pos			unit	Subtotals
nr	Description			
	Substances released during Product Life and Landfill			
	Refrigerant in the product (Click & select)	0	g	1-none
228	Percentage of fugitive & dumped refrigerant	0%	a I I a	
229	Mercury (Hg) in the product Percentage of fugitive & dumped mercury	0 0%	g Hg	
230	reicentage of rugitive & dumped mercury	0 70		
	Disposal: Environmental Costs perkg final product			 = 1
231	Landfill (fraction products not recovered) in g en %	2269	5%	88-fixed
232	Incineration (plastics & PWB not re-used/recycled)	4320	g	91-fixed
233	Plastics: Re-use & Recycling ("cost"-side)	480	g	92-fixed
	Do you Decycling Dan-fit	!	% of plastics	
22.4	Re-use, Recycling Benefit	in g	fraction	4
	Plastics: Re-use, Closed Loop Recycling (please edit%)	48	1%	4
235 236	Plastics: Materials Recycling (please edit% only) Plastics: Thermal Recycling (please edit% only)	432 4320	9% 90%	4 72
				-
	Electronics: PWB Easy to Disassemble ? (Click&select)	0	NO	98
238	Metals & TV Glass & Misc. (95% Recycling)	38551		fixed

RESULTS

	ECO-DESIGN OF ENERGY-USING FRODUCTS					EuP EcoReport: Assessment of Environmental Impact						
Nr	Life cycle Impact per product:						apr-07		R. v. Ho	Isteijn		
0	Products				0 vhk							
	Life Cycle phases>	PR	PRODUCTION DIS			USE	END-OF-LIFE*			TOTAL		
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Total		
	Materials	unit						·				
1	Bulk Plastics	g			4000			3600	400	4000		
2	TecPlastics	g			800			720	80	800		
3	Ferro	g			32010			1601	30410	32010		
4	Non-ferro	g			7880			394	7486	7880		
5	Coating	g			0			0	0	0		
6	Electronics	g			690			690	0	690		
7	Misc.	g			0			0	0	0		
	Total weight	g			45380			7005	38376	45380		
	Other Resources & Waste debet credit											
8	Total Energy (GER)	MJ	2442	851	3293	218	820714	449	254	195	82442	
9	of which, electricity (in primary MJ)	MJ	532	492	1024	0	25063	0	2	-2	2608	
10	Water (process)	ltr	631	7	638	0	1677	0	1	-1	231	
11	Water (cooling)	Itr	548	212	760	0	66816	0	10	-10	6756	
12	Waste, non-haz./ landfill	g	93791	3919	97709	119	30025	2783	7	2776	13063	
13	Waste, hazardous/ incinerated	g	483	1	484	2	582	4320	1	4319	538	
	Emissions (Air)											
14	Greenhouse Gases in GWP100	kg CO2 eq.	166	48	215	14	45089	33	18	16	4533	
15	Ozone Depletion, emissions	mg R-11 eq.		negligibl						egligible		
16	Acidification, emissions	g SO2 eq.	1072	210	1281	42	19289	67	23	44	2065	
17	Volatile Organic Compounds (VOC)	g	9	1	10	3	593	1	0	1	60	
18	Persistent Organic Pollutants (POP)	ng i-Teq	916	94	1011	1	174	19	0	19	120	
19	Heavy Metals	mg Ni eq.	784	221	1006	6	492	124	0	124	162	
	PAHs	mg Ni eq.	167	0	167	9	125	0	0	0	30	
20	Particulate Matter (PM, dust)	g	155	32	187	513	1244	582	1	582	252	
	Emissions (Water)											
21	Heavy Metals	mg Hg/20	783	0	783	0	169	37	0	37	99	
22	Eutrophication	g PO4	15	0	15	0	1	2	0	2	1	
23	Persistent Organic Pollutants POP) ng i-Teq negligible											