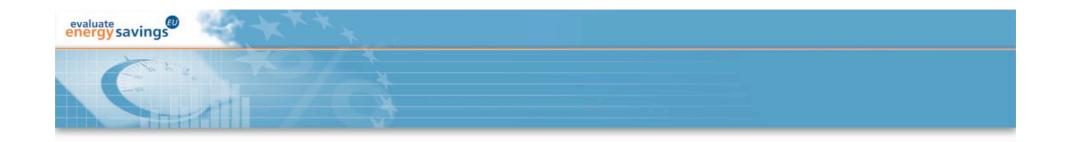
Evaluation and Monitoring for the EU Directive on Energy End-Use Efficiency and Energy Services

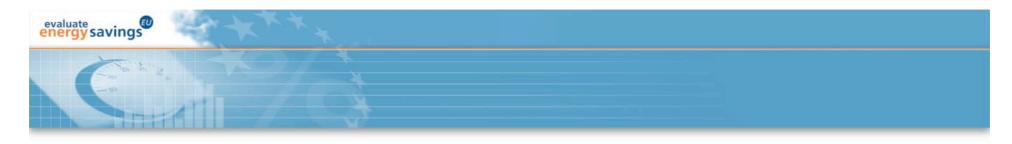
How much energy saving is 1 % per year?

Stefan Thomas, Wuppertal Institute Lars J. Nilsson, Lund University Wolfgang Eichhammer, Fraunhofer-ISI Harry Vreuls, SenterNovem Jean-Sebastien Broc, ARMINES Didier Bosseboeuf, ADEME Bruno Lapillonne, Enerdata Klemens Leutgöb, A.E.A.


coordinated by

upported by

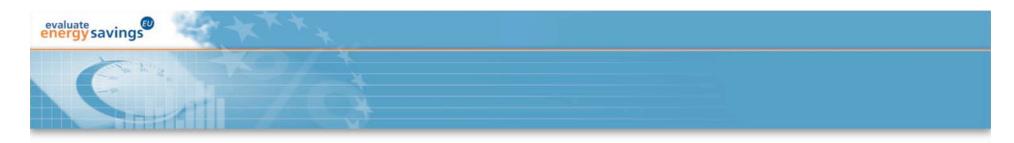
Intelligent Energy 🔝 Europe


2007 eceee Summer Study, 6 June 2007

The EMEEES project

evaluate energy savings

Thomas et al.


EMEEES – Our Mission

- support the implementation of the EU Directive on energy end-use efficiency and energy services (ESD) (2006/32/EC)
- develop harmonised methods for evaluation of energy savings
- build trust in methods and hence in savings evaluated
- develop a template for energy efficiency action plans
- provide practical advice and support for the European Commission
- provide platform for exchange: www.evaluate-energy-savings.eu

Project duration: November 2006 to April 2009

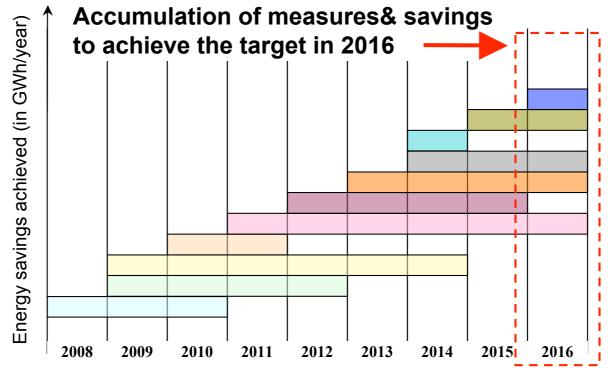
6 June 2007

Elements (Work Packages)

- WP1: Management
- WP2: Analysis of good practice
- WP3: Distinction of measures by type of evaluation method
- WP4: Bottom-up evaluation methods
- WP5: Top-down evaluation methods
- WP6: Integration of bottom-up and top-down approaches
- WP7: Planning and reporting requirements
- WP8: Pilot testing
- WP9: Platform for exchange and dissemination
- WP10: Common dissemination activities

First results from working on monitoring and evaluation methods

Thomas et al.


Analytical clarification: subject of monitoring

				EEI (facilitating) measures		
				Example 1: energy performance contractin g	Example 2: white certificate scheme s	Example 3: energy taxation
S	Sector	Energy end-us e	Efficient Solution			
Ü		example 1: heatin g	efficient boiler s		B 1	
iio			heat pump s		B 2	
End-use EEI action			etc.			
		example 2: lightin g	CFL		Bi	
		etc.				с
	Tertiar y	example 1: heatin g	efficient boilers, pumps, etc.	A1	Вј	
		example 2: lightin g	CFL		etc.	
ŭ			efficient ballasts	A2		
Ш			etc.			
		etc.				

ESD energy savings and targets

What does *"cumulative annual energy savings"* mean?

=> sum of the annual energy savings (kWh/year) from the different EEI measures, but **only in 2010 and 2016** (accumulation of annual energy savings)

6 June 2007


evaluate energy savings

Thomas et al.

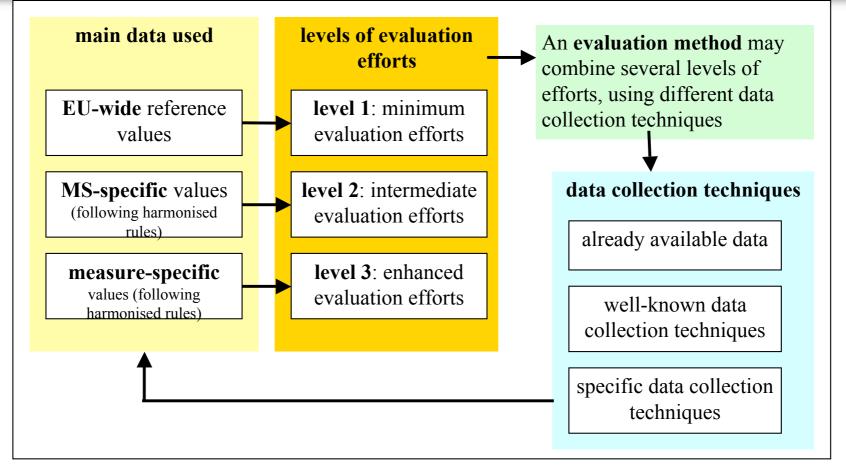
General principle for method development

- Be **as thorough as possible in analysing** the relevance of correction factors, and the possibilities to evaluate them.
- But be **as pragmatic as possible in the methods proposed** as a result of the analysis,
- With as many EU-level average values as possible

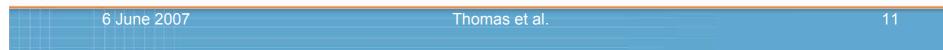
Bottom-up methods (1)

• ESD Annex IV (1)

"A bottom-up calculation method means that energy savings obtained through the implementation of a **specific** energy efficiency improvement measure are measured in kilowatthours (kWh), in Joules (J) or in kilogram oil equivalent (kgoe) and added to energy savings results from other specific energy efficiency improvement measures".


Bottom-up methods (2): types of methods

Type of method	Example of existing method	
1 Direct measurement	EPS building standards (NL)	
2 Analysis of energy bills and energy sales data	Electricity Savings Trust (DK)	
3 Enhanced engineering estimates	Energy audit programme (FI)	
4 Mixed deemed and ex-post estimate	Energy Efficiency Commitment (UK)	
5 Deemed estimate	White certificates activities (FR, IT)	
6 Bottom-up modelling based on surveys	Effect of building codes (e.g., DE, NL)	


6 June 2007

Bottom-up calculation - three levels of efforts

energy savings

 \rightarrow an evaluation method may combine different levels of efforts, according to the parameters needed

Bottom up - Calculation process

+ number of participants or units

+ double counting, multiplier effect, + other gross-to-net correction factors (e.g. free-rider effect)?

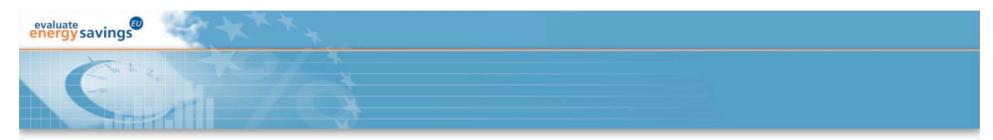
+ *timing and lifetime*, + *performance degradation (?)*

Step 1: unitary gross annual energy savings (in kWh/year per participant or unit)

Step 2: total gross annual energy savings (taking into account the number of participants or units, in kWh/year)

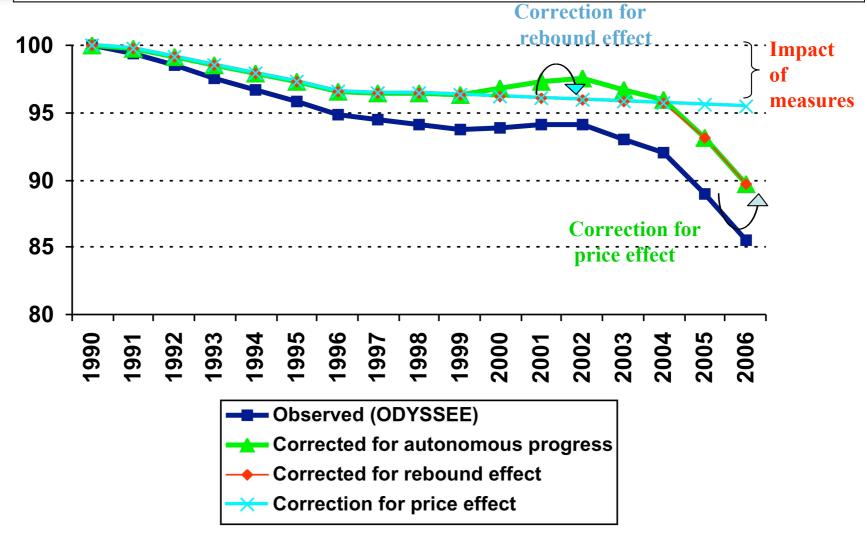
Step 3: total ESD annual energy savings in the **first year** (taking into account double counting, multiplier effect, and other gross-to-net correction factors (e.g. free-riders) ?, in kWh/year)

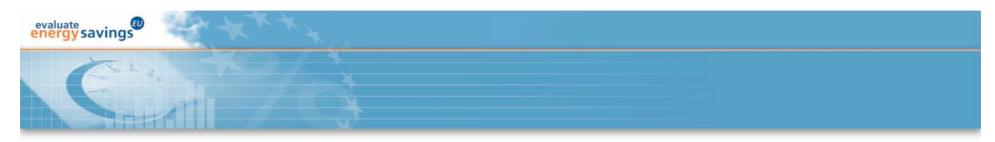
Step 4: total ESD annual energy savings achieved in the year 2016 (in kWh/year, taking account of the timing of the end-use EEI action, its lifetime and eventual performance degradation)


6 June 2007

Top-Down methods (1)

• ESD Annex IV (1)


"A top-down calculation method means that the amount of energy savings is calculated using the **national or largerscale aggregated** sectoral levels of energy savings as the starting point".

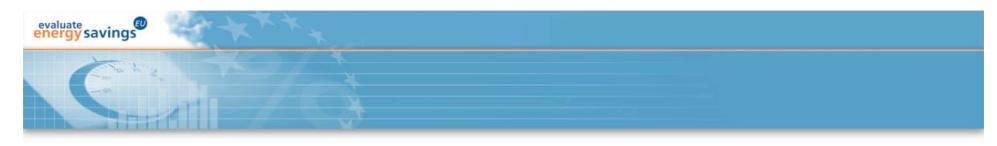

Top-down methods (2): types of methods

Type of method	Example of existing indicator or method
TD 1 Monitoring of diffusion indicators	ODYSSEE indicator on average energy consumption per appliance (kWh/year)
TD 2 Monitoring of specific energy consumption indicators	ODYSSEE index on sectoral energy consumption
TD 3 Econometric modelling	Evaluation of the effects of energy taxation (e.g., DE, SE)

Accounting of corrections to clean from different effects not linked to measures



energy savings


Bottom-up or top-down methods? Two types of methods can be either-or

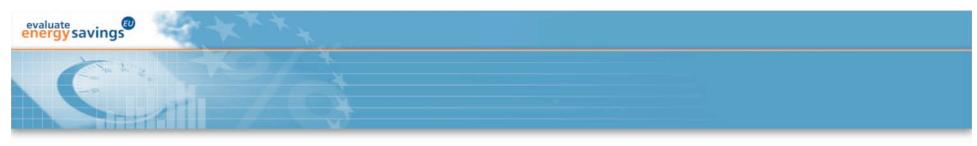
Type of method	Example of existing method	Conditions for switching type
BU 6 Bottom-up modelling based on surveys	Effect of building codes (e.g., DE, NL)	If cause for end-use EEI actions taken is not known => top-down
TD 1 Monitoring of diffusion indicators	ODYSSEE indicator on average energy consumption per appliance (kWh/year)	If change in indicator exclusively due to EEI measures => bottom-up

Other results available now or soon

- First analysis of existing evaluation methods 24 case studies (WP 2 overview in paper, extended summary on website soon)
- Draft overview of methods appropriate for several types of energy efficiency improvement measures (WP 3 - overview in eceee paper)
- Selection of 15 to 20 bottom-up and 15 top-down methods to be developed - cover biggest part of energy end use (WP 4 and 5 overview in eceee paper)
- Template for NEEAP 2007 (WP 7, on website)
- Advice for presenting information in Template for NEEAP 2007 (WP 7, on website soon)
- Presentations and minutes from European Expert Workshop 4 June (on website soon)

EMEEES – further activities

Summer/autumn 2007:


draft more bottom-up and top-down methods, and integrated methods

 Autumn 2007: review of methods - national workshops; advice to Commission on NEEAPs

Spring 2008:

Finalise, publish and present results on methods (two-day conference, Brussels)

- Autumn 2007 to early 2009: pilot cases testing the methods
- April 2009: End of project

Preliminary conclusions

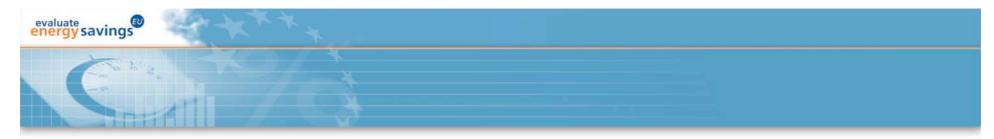
- How much energy saving is 1 % per year? Depends on perspective! ESD energy savings a special kind - many political decisions to be taken
- Covering almost all measures and actions / high share of energy consumption both with bottom-up and top-down feasible in principle how about data?
- Often possible to gather necessary data at quite limited costs, if monitoring is planned before implementing an EEI measure
- Only need to evaluate energy savings from whole package of EEI measures on one end-use (action)
- methods must be consistent between Member States ('harmonisation')
 => 3 level approach, integration bottom-up/top-down important
- **Compromise** between accuracy and costs/administrative burden needed

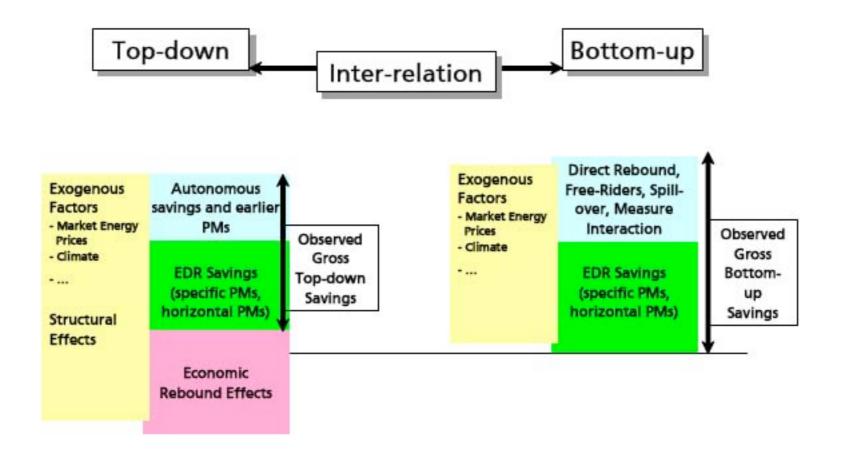
Thank you very much for your attention!

Dr. Stefan Thomas, Dr. Ralf Schüle Wuppertal Institute for Climate, Environment and Energy Tel.: +49-(0)202-2492-110 Fax.: +49-(0)202-2492-250 Döppersberg 19 | 42103 Wuppertal

Email: info@evaluate-energy-savings.eu URL: www.evaluate-energy-savings.eu www.wupperinst.org

Wuppertal Institute for Climate, Environment


Intelligent Energy 💽 Europe


The EMEEES Consortium

21 partners well-experienced in evaluation of energy savings

Project partn e r	Country
Wuppertal Institut for Climate, Environment, Energy (WI)	DE
Agence de l'Environnement et de la Maitrise de l'Energie (ADEME)	FR
SenterNovem	NL
Energy research Centre of the Netherlands (ECN)	NL
Enerdata	FR
Fraunhofer-Institut für System- und Innovationsforschung (FhG-ISI)	DE
SRC International A/S (SRCI)	DK
Politecnico di Milano, Dipartimento di Energetica, eERG	IT
AGH University of Science and Technology (AGH-UST)	PL
Österreichische Energieagentur – Austrian Energy Agency (A.E.A.)	AT
Ekodoma	LV
Istituto di Studi per l'Integrazione dei Sistemi (ISIS)	IT
Swedish Energy Agency (STEM)	SE
Association pour la Recherche et la Développement des Méthodes et Processus Industriels (ARMINES)	FR
Electricité de France (EdF)	FR
Enova SF	NO
Motiva Oy	FI
Department for Environment, Food and Rural Affairs (DEFRA)	UK
ISR – University of Coimbra (ISR-UC)	PT
Dong Energy	DK
Centre for Renewable Energy Sources (CRES)	G R

Integrated methods

