

EUROPEAN ENERGY LABELING SCHEME FOR WINDOWS

Department of Civil EngineeringReport 2008

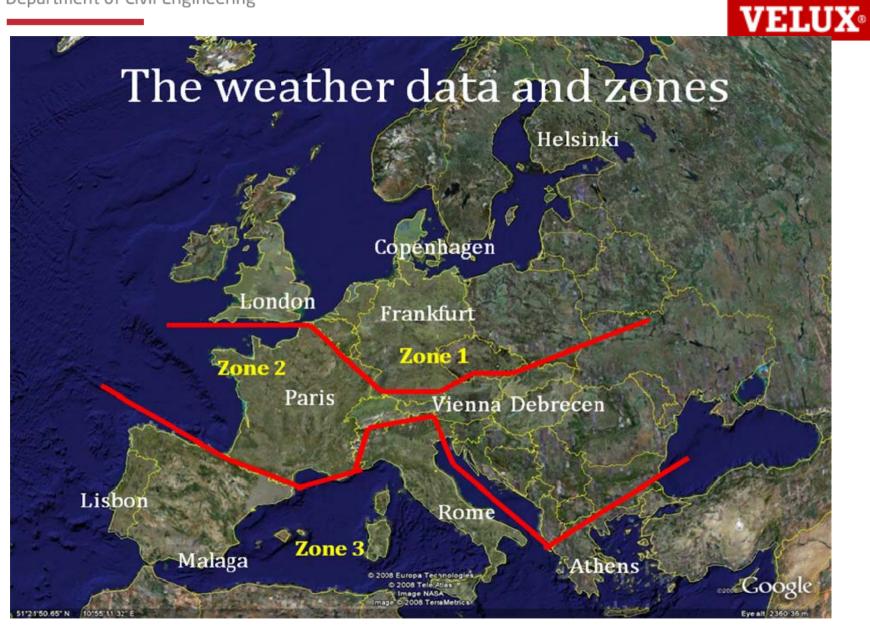
By Jesper Kragh, Jacob Birck Laustsen, Svend Svendsen DTU Civil Engineering-Report R-201 (UK)

DTU Civil EngineeringDepartment of Civil Engineering

Aim:

To show that it is possible to have a simple energy rating scheme across borders within EU, for replacement of windows in the existing residential buildings

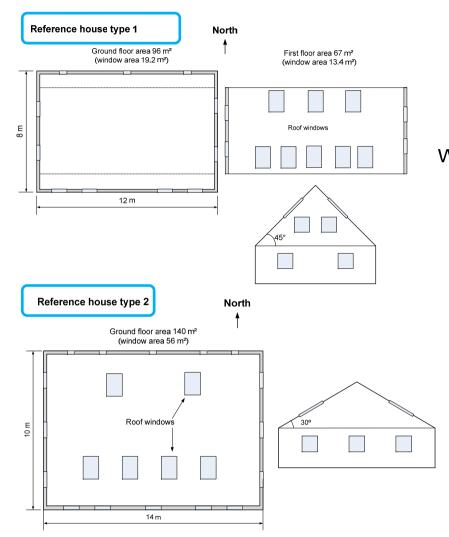
Why:


EC has in their proposal for revision of the energy labeling directive suggested to included windows.

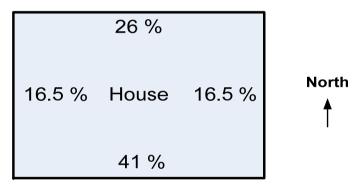
And instead of having each single member of the EU to have their own labeling scheme for windows, we suggest to use a few and simple schemes, which all are based on the same set of assumptions.

How:

Energy rating is expressed by the Energy Balance of windows that takes into account the passive solar gain and heat loss through the window.


This is done for both the heating AND cooling season

DTU Civil Engineering


Department of Civil Engineering

Window area = 20 % of ground/first floor area

Window distribution of the houses

DTU Civil EngineeringDepartment of Civil Engineering

		Zone 1	Zone 2	Zone 3
	Roof	0.2	0.5	0.8
Construction	Wall	0.3	1.0	1.2
	Floor	0.2	0.8	0.8
Ventilation	Winter	0.5	0.5	0.5
[h ⁻¹]	Summer	1.5	2.0	2.5
Window	U _w [W/m²K]	2.0	3.5	4.2
Willdow	₽w	0.50	U.58	0.58
House Type 1	Category	medium	medium	medium
Heat Capacity	C (J/Kill')	165 000	103 000	165 000
House Type 2	Calegory	licavy	neavy	heavy
Heat Capacity	C [J/Km²]	260 000	260 000	260 000

HEATING & COOLING SEASON

Table 2. Calculated heating and cooling seasons for selected EU cities

		Reference house												
Zone	Location	Тур	oe 1	Type 2										
		Heating	Cooling	Heating	Cooling									
	Helsinki	9 Aug – 18 May	13 Jun – 15 Aug	5 Sept – 27 May	5 Jul – 26 Jul									
1	Copenhagen	17 Sept – 14 May	12 Jun – 21 Aug	12 Sept – 23 May	12 Jul – 30 Jul									
l '	Frankfurt	2 Oct – 24 Apr	2 Jun – 2 Sept	27 Sept – 30 Apr	23 Jun – 24 Aug									
	London	24 Sept – 10 May	21 Jun – 22 Aug	16 Sept – 25 May	10 Jul – 29 Jul									
	Paris	19 Sept – 27 May	3 Jul – 22 Aug	14 Sept – 7 Jun	15 Jul – 16 Aug									
2	Vienna	19 Sept – 19 May	26 Jun – 23 Aug	15 Sept – 1 Jun	6 Jul – 18 Aug									
	Debrechen	23 Sept – 8 May	5 Jun – 27 Aug	18 Sept – 15 May	13 Jun – 22 Aug									
	Lisbon	1 Nov – 25 Apr	1 Jun – 28 Sept	29 Oct – 2 May	17 Jun – 20 Sept									
3	Rome	25 Oct – 27 Apr	30 May – 24 Sept	23 Oct – 1 May	9 Jun – 18 Sept									
	Athens	10 Nov – 14 Apr	13 May – 9 Oct	7 Nov – 17 Apr	21 May – 3 Oct									

Energy Balance of a Window

$$E_{ref,cooling} = I_{cooling} \cdot F_s \cdot g_w - D_{cooling} \cdot U_w$$

$$E_{ref,heating} = I_{heating} \cdot F_s \cdot g_w - D_{heating} \cdot U_w$$

Number of Degree hours

$$D_{\textbf{h}eating} = \sum_{i=\textbf{heating start}}^{\textbf{heating stop}} T_{\textit{base,heating}} - T_{\textit{out}} \quad \textit{for the heating season}$$

$$D_{cooling} = \sum_{i=\text{cooling start}}^{\text{cooling stop}} T_{out} - T_{base,cooling} \quad \textit{for the cooling season}$$

Solar Radiation

$$I_{90^{\pm}} = 0.26 \cdot I_{north,90^{\pm}} + 0.165 \cdot I_{wsst,90^{\pm}} + 0.165 \cdot I_{sast,90^{\pm}} + 0.41 \cdot I_{south,90^{\pm}}$$

$$I_{45} = 0.26 \cdot I_{north,45} + 0.165 \cdot I_{west,45} + 0.165 \cdot I_{east,45} + 0.41 \cdot I_{south,45} + 0.41 \cdot I_{s$$

$$I_{30} = 0.26 \cdot I_{north,30} + 0.165 \cdot I_{west,30} + 0.165 \cdot I_{east,30} + 0.41 \cdot I_{south,30} + 0.00 \cdot I_{s$$

$$I_{ extbf{heating}} = \sum_{i= ext{heating start}}^{ ext{heating start}} I_{90^\circ}$$
 , for the heating sessas on $I_{cooling} = \sum_{i= ext{cooling start}}^{ ext{cooling stop}} I_{90^\circ} ext{ for } I_{90^\circ} > 300 ext{W} ext{ and } T_{out} > 23 ext{ °C}$

ENERGY BALANCE, EACH SELECTED CITY										
				Hea	ating se	ason		son		
			Sol	ar radia	ation	Degree hours	Sola	r radiat	ion	Degree ho
			(kWh/n	n²)	(kKh)	(k')	(kKh)	
	Location	Ref. House	I_90º	I_45º	I_30º	D	I_90º	I_45º	I_30º	D
Zone 1	Helsinki	Type 1	252	420	434	119	16	35	43	0
	Copenhagen	Type 1	203	335	343	88	12	27	34	0
	Frankfurt	Type 1	164	273	281	73	37	105	126	0
	London	Type 1	200	333	342	71	22	63	74	0
Zone 1	Helsinki	Type 2	230	382	394	118	14	30	38	0
	Copenhagen	Type 2	227	381	393	90	12	27	34	0
	Frankfurt	Type 2	183	308	317	76	37	104	125	0
	London	Type 2	234	398	413	75	11	32	38	0
Zone 2	Paris	Type 1	239	422	443	72	26	78	95	0
	Vienna	Type 1	241	424	445	83	41	130	156	0
	Debrecen	Type 1	235	409	426	83	58	184	219	1
Zone 2	Paris	Type 2	265	476	502	75	17	54	65	0
	Vienna	Type 2	269	483	510	85	29	88	106	0
	Debrecen	Type 2	256	449	471	84	48	158	188	1
Zone 3	Lisbon	Type 1	283	459	466	33	107	390	458	2
	Rome	Type 1	248	417	430	42	111	388	457	1
	Athens	Type 1	216	366	378	32	161	564	653	4
Zone 3	Lisbon	Type 2	302	500	510	34	87	323	379	2
	Rome	Type 2	253	428	442	43	98	340	401	1
	Athens	Type 2	226	383	396	33	157	547	634	4

DTU Civil Engineering

Department of Civil Engineering

EACH ZONE - AVERAGED

Net energy gain [kWh/m²]	Slope angle	Heating	Cooling
	90°	$E_{ref,heating} = 212 \cdot g_w - 89 \cdot U$	$E_{ref,cooling} = 20 \cdot g_w - 0 \cdot U_w$
Zone 1	45°	$E_{ref,heating} = 354 \cdot g_w - 89 \cdot H_w$	$E_{ref,cooling} = 53 \cdot g_w - 0 \cdot U_w$
	30°	$E_{ref,heating} = 365 \cdot g_w - 89 \cdot U_w$	$E_{ref,cooling} = 64 \cdot g_w - 0 \cdot U_w$
	90°	$E_{ref,heating} = 251 \cdot g_w - 80 \cdot U_w$	$E_{ref,cooling} = 36 \cdot g_w - 1 \cdot U_w$
Zone 2	45°	$E_{ref,heating} = 444 \cdot g_w - 80 \cdot U_w$	$E_{ref,cooling} = 116 \cdot g_w - 1 \cdot U_w$
	30°	$E_{ref,heating} = 466 \cdot g_w - 80 \cdot U_w$	$E_{ref,cooling} = 138 \cdot g_w - 1 \cdot U_w$
	90°	$E_{ref,heating} = 254 \cdot g_w - 36 \cdot U_w$	$E_{ref,cooling} = 120 \cdot g_w - 2 \cdot U_w$
Zone 3	45°	$E_{ref,heating} = 426 \cdot g_w - 36 \cdot U_w$	$E_{ref,cooling} = 425 \cdot g_w - 2 \cdot U_w$
	30°	$E_{explicating} = 437 \cdot g_w = 36 \cdot H_w$	$E_{vef\ cooling} = 497 \cdot g_w - 2 \cdot U_w$

BFRC has 218 kWh/m2 as solar radiation and 69 kKh DK uses 196 kWh/m2 as solar radiation and 90 kKh

VELUX further studies are showing that for DK typical building with 45 °slope $E_{ref,heating}$ = 345 * gw – 90*Uw based on data from the Technical University in Denmark

EACH LOCATION – FACADE WINDOWS

Window type	1	2	3	4	5	6	7	8	9	10
U-value - 90 degrees	0.8	0.8	1	1	1.2	1.2	1.4	1.4	1.6	1.6
g-value for the window	0.24	0.32	0.32	0.40	0.40	0.48	0.40	0.48	0.40	0.48
Location/Energy balance [kWh/m²]										
Helsinki	-35	-15	-38	-18	-42	-22	-66	-46	-90	-69
Copenhagen	-21	-5	-23	-6	-24	-8	-41	-25	-59	-43
Frankfurt	-19	-6	-20	-7	-22	-9	-36	-23	-51	-38
London	-8	8	-7	9	-5	11	-19	-3	-33	-17
Helsinki	-39	-21	-44	-26	-49	-31	-73	-54	-96	-78
Copenhagen	-18	0	-18	1	-18	1	-36	-17	-54	-36
Frankfurt	-17	-2	-17	-3	-18	ņ	-33	-18	-48	-33
London	-4	15	0	19	4	23	-11	8	-26	-7
Paris	0	19	4	23	9	28	-6	14	-20	-1
Vienna	-9	10	-6	13	-4	16	-20	-1	-37	-18
Debrecen	-10	0	-7	11	-5	14	-22	-3	-38	-19
Paris	4	25	10	31	16	38	1	23	-13	8
Vienna	-4	18	1	22	5	27	-12	10	-29	-8
Debrecen	-6	15	-2	18	1	22	-16	5	-32	-12
Lisbon	42	64	58	80	74	96	67	90	60	83
Rome	26	46	37	57	49	69	41	60	32	52
Athens	26	43	37	54	48	65	41	58	35	52
Lisbon	45	70	63	87	80	104	73	98	67	91
Rome	27	47	39	59	50	71	42	62	33	54
Athens	28	46	39	57	51	69	44	62	37	55

Best performing product 2. best performing product 3. best performing product 4. best performing product Worth performing product

DTU Civil Engineering Department of Civil Engineering EACH LOCATION — ROOF WINDOWS 45° **30°**

ue i					_	_	_						_		_		_			
Window type	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
U-value - 45 degrees	0.95	0.95	1.15	1.15	1.4	1.4	1.6	1.6	1.8	1.8	1	1	1.2	1.2	1.5	1.5	1.7	1.7	1.9	1.9
g-value for the window	0.24	0.32	0.32	0.40	0.40	0.48	0.40	0.48	0.40	0.48	0.24	0.32	0.32	0.40	0.40	0.48	0.40	0.48	0.40	0.48
Location/Energy balance [kWh/m²]																				
Helsinki	-12	21	-2	31	1	35	-22	11	-46	-13	-15	20	-4	31	-5	30	-29	6	-53	-18
Copenhagen	-3	24	6	33	11	38	-6	21	-24	3	-5	22	5	32	6	33	-11	16	-29	-2
Frankfurt	-4	18	4	25	7	29	-7	14	-22	0	-6	17	2	25	3	25	-12	11	-26	-4
London	13	39	25	52	34	61	20	47	6	33	11	39	25	52	31	58	17	44	2	30
Helsinki	-20	11	-13	18	-12	19	-35	-5	-59	-28	-23	8	-15	16	-19	13	-43	-11	-66	-35
Copenhagen	6	36	18	49	26	56	8	38	-10	20	4	36	17	49	22	53	4	35	-14	17
Frankfurt	2	27	11	36	17	42	2	27	-13	11	0	26	11	36	13	39	-2	24	-17	9
London	25	57	42	73	55	87	40	72	25	57	24	57	42	75	53	86	38	71	23	56
Paris	33	67	52	86	68	102	53	87	39	73	34	70	55	91	69	104	55	90	40	76
Vienna	23	56	40	74	53	87	36	70	20	53	23	59	42	78	53	88	36	72	19	55
Debrecen	20	52	36	68	48	80	31	64	15	47	20	54	37	71	46	81	30	64	13	47
<105	43	81	66	105	86	124	71	109	56	94	46	86	71	111	89	129	74	114	59	99
Vienna	35	74	57	95	74	113	5/	95	40	78	3/	/6	61	102	76	117	59	100	42	83
Debrecen	28	64	47	83	62	98	45	81	28	64	29	66	50	87	62	100	45	83	28	66
Lisbon	79	116	109	146	138	174	131	168	125	161	79	116	110	147	137	174	130	168	124	161
Rome	60	94	85	119	108	142	100	133	92	125	61	96	87	122	109	143	101	135	92	127
Athens	57	86	80	109	101	130	95	124	88	117	58	89	82	112	103	133	96	126	90	120
Lisbon	88	128	121	161	152	192	146	186	139	179	89	129	123	163	153	194	146	187	140	180
Rome	62	97	88	122	112	146	103	138	95	129	64	99	90	126	113	148	104	140	96	131
Athens	61	91	85	115	107	138	100	131	94	124	62	94	87	119	109	140	102	134	96	127

Best performing product
2. best performing product
3. best performing product
4. best performing product
Worth performing product

CONCLUSION

Possible to develop an European scheme for windows where Europe is divided into zones as the performances of windows for the heating season do not differ significant in the zones

The energy performance of **sloped windows differs from vertical windows**, where the passive solar radiation for sloped windows is much higher than for vertical windows and thereby the **energy performance of sloped windows is better than for vertical windows**

The best performing façade window for replacement in the northern part of Europe is low energy window with U-values between 0.8 and 1.2 however the difference between the 3 best windows are below 10 kWh/m² in northern climate. The best performing façade window on an overall evaluation will be a window with a U-value of approximately 1.2 W/m²K and a g-value of approximately 0.48 for the total window

The performance of best sloped windows for replacement is the same for all Europe, with a U-value of 1.2 W/m²K and a g-value of 0.48 for the total window

By replacing the windows in the existing building stock an energy saving in Europe can be up to about 135 GWh/year if existing old windows are replaced with new windows with a U-value of 1.2 W/(m²K) and a g-value of 0.5 for the total window

DISCUSSION – FURTHER WORK TO BE DONE

- Fraction of windows
- Insulations values of the building envelope
- Flat Roof Windows 0 degrees
- Diagrams for Uw vs. gw for R&D purposes
- Others?