Environmental Research Institute, University College Cork Sustainable Energy Research Group Department of Civil & Environmental Engineering

Modelling energy consumption in a manufacturing plant using productivity KPIs

Brian Ó Gallachóir, Caiman Cahill eceee Summer Study,
La Colle sur Loup, June 2009

Introduction

Unit consumption: useful top-down measure of energy efficiency improvements in a manufacturing plant

- Well-established methods for measuring energy consumption and production output
- Alternative approach of measuring productivity using metric from process engineering: OEE

Productivity & Energy Efficiency

- 1.- NACE 13-14 Mining
- 2.- NACE 15-16 Food & Beverages
- 3.- NACE 17-18 Textiles
- 4.- NACE 20 Wood Products
- 5.- NACE 21-22 Paper & Publishing
- 6.- NACE 24 Chemicals
- 7.- NACE 25 Rubber & Plastic
- 8.- NACE 26 Non-Metallic Minerals
- 9.- NACE 27-28 Basic Metals
- 10.- NACE 29 Machinery & Equipment
- 11.- NACE 30-33 Electrical & Optical
- 12.- NACE 34-35 Transport Equipment
- 13.- NACE 36, 37, 19 Other Manuf.
- Irish Industry: strong relationship between productivity and EE improvements at 2-digit NACE level
- 1% increase in production output -> 0.9% increase in energy efficiency
- Productivity a key driver for EE

What is OEE?

- Overall Equipment Effectiveness
- Measures operating efficiency of machine or line
- Developed by Nakajima (1988) as part of TPM (Total Productive Maintenance)

OEE = %Availability x %Performance x %Quality

- OEE: measure of actual output versus max. theoretical output
- Availablility: measures losses due to downtime
- Performance: measures losses due to plant running at suboptimal speeds
- Quality: measures losses due to poor product or process quality

Calculating OEE

OEE = %Availability x %Performance x %Quality

$$Availability = \frac{Actual\ production\ time}{Planned\ production\ time}$$

$$Quality = \frac{Total\ good\ products}{Total\ products}$$

13

Calculating OEE

QA Checks

Maintenance

12%

Idle

15%

Reasons for losses can be further detailed using OEE tools

Minimum unit consumption, UC_{min}

Unit consumption, UC

$$UC = \frac{Energy\ consumption\ (EC)}{Production\ output\ (PO)}$$

Min. unit consumption, UC_{min}

Ideal prod. output
$$(PO_{th}) = \frac{PO}{OEE}$$

$$UC_{min} = \frac{Energy \text{ use at } PO_{th} \text{ } (EC_{th})}{PO_{th}}$$

Week 44: Production Output = 482 units (UC = EC/PO)

- Week 44: Production Output = 482 units (UC = EC/PO)
- OEE = 53.6% ($UC_{min} = EC_{th}/PO_{th}$)
- Quality = 91%, Availability = 70%, Performance = 84%

- Week 44: Production Output = 482 units (UC = EC/PO)
- OEE = 53.6% ($UC_{min} = EC_{th}/PO_{th}$)
- Quality = 91%, Availability = 70%, Performance = 84%

- Week 44: Production Output = 482 units (UC = EC/PO)
- OEE = 53.6% ($UC_{min} = EC_{th}/PO_{th}$)
- Quality = 91%, <u>Availability = 70</u>%, Performance = 84%

- Week 44: Production Output = 482 units (UC = EC/PO)
- OEE = 53.6% ($UC_{min} = EC_{th}/PO_{th}$)
- Quality = 91%, Availability = 70%, Performance = 84%

- Each OEE component can be further broken down and energy quantities attributed to causes of failure
- Each cause has an associated energy waste figure

- Using an average unit energy cost a value of wasted energy can be calculated for each cause
- e.g. Breakdown & Repair was responsible for €27.60 of wasted energy per unit produced in Week 44

- Similarly, average CO₂ emissions values can be applied to get emissions attributed to each cause
- e.g. Stoppages due to QA Checks accounted for 16kg
 CO₂ emissions per unit produced in Week 44

From OEE to OFE

- OEE: a measure of efficiency of a machine or line
- OFE: (Overall Factory Effectiveness) efficiency of complete manufacturing plant
- OFE could be used to assign energy losses to inefficiencies in overall plant processes
- OFE metric still in early stage of development (manufacture of semi-conductors)

Additional points

- Methodology could be used for specific fuel types or energy-consuming utilities, e.g. steam
- Model measures efficiency of plant "as is"; Changes to plant will lead to changed energy model
- Compare UC_{min} before and after plant modifications or device-oriented EE measures to quantify savings
- Need real plant data to validate the model!

In conclusion...

- Proposed model complements existing plant energy models
- EE gains through productivity can be pursued in tandem with device-oriented EE measures
- Model can quantify EE improvements to be gained by increased productivity
- Model can assign energy waste to specific causes
- Costs of wasted energy can be assigned to individual cost centres - not overheads

Thank You

Acknowledgements:

Sustainable Energy Ireland

Contact:

Caiman Cahill, UCC; caimancahill@mac.com

Brian Ó Gallachóir, UCC; b.ogallachoir@ucc.ie