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Abstract
Energy efficiency is a simple and often cost-effective way to 
reduce energy consumption and greenhouse gas emissions. 
Different policies have been designed to promote the imple-
mentation of energy-efficiency measures in industry. It is gen-
erally assumed that firms of different size have different means 
and face different barriers when adopting energy-efficiency 
measures. Several studies have tried to identify a net effect of 
firm size and other firm characteristics. However, a detailed 
understanding beyond linear regression of the general effect of 
firm size on energy consumption and the adoption of energy 
efficiency measures is still missing. Also in many policy evalu-
ations (ex-ante as well as ex-post), only average values are used, 
ignoring differences in firm size of several orders of magnitude. 
Such a simplistic approach only allows for constrained policy 
recommendations as it neglects the large diversity that prevails 
among firms and that dominates firms’ adoption decision. 
Here, we study empirical distributions of firm size and adop-
tion rates and how these interact. We identify general empiri-
cal trends by using data from different countries and industry 
branches. Thus, a more detailed picture of the adoption be-
haviour of firms of different size is obtained. This is a first step 
towards a more realistic consideration of diversity among firms 
in policy design and evaluation methods. The broad empirical 
trends have consequences for the future design of more effec-
tive energy-efficiency policies.

Introduction
Improving energy efficiency is a key strategy in the develop-
ment towards a more sustainable global energy system (IEA 
2011). Increased efficiency is seen as a major option for low-
ering greenhouse gas emissions by reducing the demand for 
fossil fuels. It also has the potential to significantly reduce the 
dependency on energy imports, address the scarcity of energy 
resources and finally, contribute to improving the competitive-
ness and productivity of firms. Given these benefits, energy ef-
ficiency is at the top of the policy agenda of numerous govern-
ments worldwide and is also receiving a lot of attention from 
researchers and analysts. The International Energy Agency, for 
example, predicts that global greenhouse gas emissions could 
be significantly reduced simply by using the currently best 
available technology (BAT), and additional potentials are avail-
able due to new, emerging technologies (IEA 2007).

Thus, the spread or diffusion of energy-efficient technolo-
gies (EET) through society is a highly relevant research field. 
Even the most revolutionary innovations will have no effect on 
energy demand if they do not find users. It is also a very com-
plex field as numerous and often interrelated factors affect the 
diffusion of EETs. For policy-makers, however, it is crucial to 
understand the determinants of diffusion in order to effectively 
steer or accelerate it where it is too slow from a social optimum 
perspective. 

Several general factors are widely considered to affect the 
diffusion process. While profitability is probably the most re-
searched innovation characteristic and it is generally accepted 
that it increases the speed of diffusion (Mansfield 1961; Ray 
1988; Stoneman 2002), other characteristics also have a sig-
nificant impact. For example, it has been shown that the com-
plexity of an innovation is negatively correlated to the speed 
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of diffusion (Kemp, Volpi 2008; Tornatzky, Klein 1982). When 
looking at the impact of adopter characteristics on diffusion, 
firm size is the most commonly researched parameter and is 
generally expected to have a positive impact on the adoption 
rate. The implication here is that larger firms are more likely to 
adopt innovations (Davies 1979). 

Research on the effect of firm characteristics on the adoption 
of EET often emphasizes the role of firm size. It is generally 
accepted that larger firms tend to have higher adoption rates 
than smaller firms. If, however, intra-firm diffusion is included 
in this comparison, the picture becomes more complex. Firms 
also differ in terms of energy intensity, measured as the energy 
cost share of the firms’ turnover. Energy-intensive firms typi-
cally focus more on energy efficiency and regard it as an impor-
tant factor for their competitiveness. On the other hand, ener-
gy-intensive firms also typically have access to lower energy 
tariffs, rendering many EETs less profitable and thus reducing 
the incentive to adopt them. Further, firms also differ regarding 
the extent that energy management is integrated into their of-
ficial routines. If it is officially integrated, the adoption of EETs 
and searching for new EETs are much more systematic and are 
given higher priority within the firm, resulting in higher adop-
tion rates. These and many other factors potentially influencing 
the adoption decision have been analyzed, mainly in terms of 
case studies and econometric analyses. 

The fact that firms differ in the energy consumption is well-
established (see, e.g. Stoneman (2002), Schleich (2009), Rohdin 
et al. (2007) and references therein). Accordingly, policies have 
been designed for different companies and different industrial 
segments, particularly for small and medium enterprises and 
energy intense industry. 

The objective of the present paper is to reconsider adoption 
of EET by companies by particularly taking into account the 
influence of firm size and energy demand. Some of the results 
shown in the present paper have qualitatively been discussed 
in the literature (Saygin et al. (2011) and references therein). 
Here, we want to go one step further and quantify the degree 
of heterogeneity among companies and its different origins by 
a more detailed statistical analysis. Where the fact that compa-
nies differ in their energy consumption and adoption decision 
is well known, we aim at a closer study of this heterogeneity 
between companies.

The paper is organised as follows. The following section in-
troduces the data sets used for our analysis and reviews some 
statistical tools and important statistical distributions. The re-
sults section will be used to present our main results on the 
heterogeneity of firms’ energy consumption and the influence 
of two important factors potentially on the adoption decisions, 

namely payback time and implementation costs, will be stud-
ied. We will conclude by pointing out policy implications of the 
results presented.

Data and Methods
The present section introduces the data we used for the present 
paper and provides some background on the statistical tools for 
the analysis to be performed in the results section.

DAtA useD 
Large scale data on the adoption of EET by companies is scarce. 
Here we use two data sets. Both data sets result from energy 
audits in small- and medium sized firms (SMEs) and contain 
information on individual energy-efficiency measures that 
were recommended by the auditors. The smaller data set stems 
from the evaluation of a governmental incentives program to 
stimulate energy audits in Germany “Sonderfonds Energieef-
fizienz in KMU” and is not publicly available. The program has 
been studied earlier, e.g. by Gruber et al. (2011). The second 
and larger data set stems from the US Industrial Assessment 
Center (IAC) (http://iac.rutgers.edu/). The data is publicly 
available and has been earlier studied, e.g., by Anderson and 
Newell (2004). We will mainly focus on the latter data set since 
it is much more comprehensive, i.e. contains more entries, and 
also states information on adoption of energy efficiency meas-
ures. The following table summarises the descriptive statistics 
of both data sets. The data base further contains a variable 
named “implementation status”, which contains the entries 
“implemented”, “not implemented” or “pending” and is evalu-
ated by phone after the audit has taken place. A project is coded 
as “implemented” if the implementation has taken place within 
24 months after the audit, if not, it is “not implemented”.

MethoDs
The present section introduces some background methodology 
that will be used later for analysing the data. 

Firm size Distributions 
Firms differ considerably in size. This fact has long been stud-
ied and analysed in terms of firms’ revenues, number of em-
ployees, sales and other measures, see, e.g., Axtell (2001), de 
Wit  (2005), Sutton (1997) and Newman (2005). One main 
finding is that the distribution of firm sizes is heavy tailed, i.e. 
large firms occur more frequently than could be expected by 
localised distributions, say, a normal-distribution. 

There is some debate in the literature about the distribution 
that describes the observed firm sizes best and its origins. This 

Data set and variable Min Max Median Std. Dev. 
German data N = 2670 measures     
Number of employees 1 550 25 59 
Annual energy consumption [MWh]  1.66 115,460 460.4 96,414 
Annual energy costs [103 Euro] 1.606 7,274.7 44.30 904.52 
US IAC data N = 114,548 measures     
Number of employees 0 5800 130 193.5 
Annual electricity consumption [MWh]  0 1,200,000 3,400.0 25,772.5 
Annual energy costs [103 USD] 1.0  190,000 295.5 2,516.3 

 

table 1. Descriptive statistics of the company data sets and their energy consumption. 
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is not the focus of the present paper, but one distribution that 
provides a good approximation for actual firm sizes is the log-
normal distribution

	 (1)

where x is the random variable under consideration, in our case 
the firm size measured as number of employees or revenues. 
The log-normal distribution has two parameters: μ sets the 
scale and σ determines the distribution’s shape. The log-normal 
distribution can also reproduce power-law tails in firm size dis-
tributions, known as Zipf ’s law (Newman 2005). 

In the following, we will use two ways of displaying a distri-
bution function P(x). The complementary cumulative distribu-
tion function (CCDF), denoted as Pc(x), and the cumulative 
distribution function CDF(x) are defined as (Sornette 2000) 

 and (2)

These quantities have two advantages. Firstly, no grouping or 
binning of the data is necessary as in usual histograms. This is 
important since the choice of bin widths or class boundaries 
can have strong impact on the empirical distributions. In con-
trast to this, both the CDF and CCDF are summed element-
wise and thus in principle provide the whole information from 
every data point. Secondly, both quantities are statistically 
more stable against outliers. The reason is that the cumulative 
summation leads to some auto-averaging. Additionally, both 
quantities have straightforward interpretations: CDF(x) is the 
probability for values smaller than x and the CCDF Pc(x) is the 
probability for values in the data larger than or equal to x. Both 
quantities are shown for the firm size of our data sets measured 
by the number of employees per firm in figure 1.

We observe similar heavy-tailed distributions of firm size for 
both the US and German data. This is in agreement with estab-
lished results on firm size distributions (de Wit 2005). Further-

more, both distributions are similar in shape, the US data is 
only shifted to larger firm size, i.e. the US data contains larger 
companies but the distribution has roughly the same statistical 
properties. The dashed line in the main panel of figure 1 shows 
additionally a power-law fit of the upper tail of the US data us-
ing the methods of (Newman 2005). The fit nicely follows the 
observed empirical distribution (apart from a simple numerical 
offset that has been added for better visibility). This power-law 
tails is actually known as Zipf ’s law. The validity of this behav-
iour is not the focus of the present paper but well documented 
in the literature (see Axtell 2001, deWit 2005, Sornette 2001 
and references therein) and has been reproduced here for com-
parison and completeness.

To summarise, we introduced the CCDF and CDF as sta-
tistical tools for displaying and analysing data and confirmed 
that the data used in the present paper follows known results 
for empirical firm size distributions, i.e. the data seems rep-
resentative as far as the statistical distribution of firm sizes is 
concerned.

Measures of Inequality 
One goal of the present paper is to highlight the heterogene-
ity or inequality of companies and their energy consumption 
as well as adoption behaviour. The present section introduces 
Lorenz curves as statistical method to display inequality of dis-
tribution functions, which will be used later.

Lorenz curves are commonly used to display and quantify 
inequality or heterogeneity in populations and their distribu-
tions. For a given distribution P(s), for example the log-normal 
distribution given in eq. (1), the coordinates for a Lorenz plot 
are obtained as (see, e.g., Drăgulescu and Yakovenko (2001))

 and (3)

Lorenz curves are a common tool to display inequality in in-
come distributions and can easily be interpreted as “share x of 
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Figure 1. Firm size distribution by employees. Main figure: CCDF for the number of employees per firm. The upper curve shows the US data 
from IAC, the lower curve shows the German data. Inset: CDF for the number of employees per firm. Lower curve: US data, upper curve: 
German data. Both data sets contain mainly small and medium enterprises and show similar distribution functions for size. The firms in the 
US data set are generally larger than in the German data. The dashed line corresponds to a power-law fit of the tail of the US data.
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the population has share y of the total income” (Drăgulescu 
and Yakovenko 2001). Drăgulescu and Yakovenko analytically 
derived the Lorenz curve formula y(x) = x + (1 − x) ln(1 − x) 
for a purely exponential distribution P(s) = c exp[−s/T] with 
the scale parameter T and a normalisation constant c. Please 
note that the scale parameter drops out from the Lorenz curve. 
This is natural since the Lorenz curve only serves to display 
inequality and this is independent from scale: a millionaire is 
poor when everybody else is a billionaire. Only relations matter 
for inequality, not scale.

If the distribution was uniform, i.e. every s in the data had the 
same probability of occurrence P(s), the Lorenz curve would be 
a straight line with unit slope. Lorenz Curves y(x) are also used 
to define Gini coefficients G 

 (4)

as simple quantity representing the inequality within an em-
pirical distribution.

Results
The present section contains the results of the present paper. 
The first part discusses heterogeneity and inequality in firm’s 
energy consumption. The second part will deal with the influ-
ence of firm size, payback times and implementation costs on 
the decision for adopting energy efficiency measures.

heteRogeneIty In eneRgy ConsuMptIon
It is natural to assume that the diversity in firm size, recapitu-
lated in the previous section, implies large diversity in firms’ 
energy consumption. Additionally, companies’ affiliation to 
different economic sectors should also add to the inequality in 
energy consumption. The large heterogeneity of firms in energy 
consumption is demonstrated in figure 2 where we show the 
CCDF (main panel) and CDF (inset) of energy consumption 
per firm measured by their annual energy costs in USD for the 
US data. 

As for company size, we observe that the empirical distribu-
tion of annual energy costs in industry is heavy tailed and spans 
many orders of magnitude. Please note that the data contains 
only small and medium enterprises. Also shown as in figure 2 
is a power-law fit (dashed line) for the upper tail of the energy 
consumption distribution providing a good fit for more than 
two orders of magnitude. A horizontal offset of the power-law 
fit has been added for better visibility. Note the logarithmic 
scale of the figure, indicating that the fit deviates only by a few 
per cent. Thus, we have demonstrated that Zipf ’s law (Axtell 
2001, Newman 2005) also holds for energy consumption in 
industry.

Comparing the empirical distribution of firm sizes and en-
ergy consumption, one might be led to believe that the heavy 
tailed distribution of energy consumptions is a trivial conse-
quence of the empirical firm size distribution. This idea could 
be further strengthen by the seeming similarity of both dis-
tributions. However, this can easily be tested by studying en-
ergy consumption per capita (i.e. per employee) in the different 
firms. If energy consumption per capita was approximately 
constant over the different firm sizes, firm size could be used as 
proxy for energy consumption. We test this hypothesis in fig-
ure 3. The left panel of figure 3 shows the energy consumption 
per capita for all firms from the German data set as a function 
of firm size (measured as number of employees). We observe 
that energy consumption per capita is not constant but varies 
over more than four orders of magnitude (note the logarithmic 
scale in the left panel of figure 3). In fact, energy consumption 
per capita appears to follow the heavy-tailed log-normal distri-
bution as the right panel of figure 3 demonstrates.

One might object that different industrial sectors naturally 
have different per capita energy consumption, but figure 4 will 
show that the differences between segments are not sufficient 
to account for the remaining heterogeneity (cf. figure 4 and its 
discussion). Thus, we conclude that firm size cannot directly 
be used as proxy for energy consumption. Of course, this fact 
is not totally new but is already documented in the literature 

1

0
1 2 ( )dG y x x=  

	  
Figure 2. Firm size distribution by annual energy costs. Main panel: CCDF of energy consumption in industry measured as energy costs. The 
dashed line is a power-law fit for the upper tail of the distribution. Inset: CDF of energy consumption in industry measured as annual energy 
costs.
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(see, Saygin et al. (2011) and references therein). However, the 
aim of the present paper is not to only acknowledge this fact 
but start a more thorough statistical and quantitative analysis 
of this heterogeneity, as provided in figure 3.

As already mentioned, part of the differences in per capita 
energy consumption can be attributed to different industrial 
sectors with their individual production processes. We are now 
going to analyse the different levels of comparisons already 
introduced (total energy consumption, per capita energy con-
sumption and pre capita energy consumption per sector) at 
the same footing. We use the Lorenz plots introduced in the 
method section to compare the different levels of inequality. 
The result for the US data is shown in figure 4.

Figure 4 shows Lorenz curves calculated for the US data. The 
lowest curve corresponds to the distribution of total energy 
consumptions (cf. figure 2), the second lowest to per capita en-

ergy consumption (cf. figure 3) and the third lowest curve cor-
responds to per capita energy consumption for one industrial 
sector. Here, companies from commercial printing and lithog-
raphy have been chosen according to their SIC 2752 (with sam-
ple size N = 1517). We performed similar analyses for other in-
dustrial sectors, such as those producing corrugated and solid 
fiber boxes (SIC: 2653, sample size N = 2291), companies pro-
ducing plastics (SIC: 3089, with sample size N = 6271), as well 
as producers of motor vehicle parts and accessoires (SIC: 3714, 
with sample size N = 2331). The case of printing and lithogra-
phy shown in figure 4 actually showed the smallest heterogene-
ity and has therefore been included in figure 4. Additionally, we 
display a straight line in figure 4, corresponding to the case of 
total equality (dashed line in figure 4) for comparison.

Figure 4 demonstrates that neither firm size nor industrial 
segment are sufficient to account for the heterogeneity in en-

	  
Figure 3. Energy consumption per capita. Left panel: energy consumption per capita for all firms from the German data set as a function 
of firm size (measured as number of employees).Right panel: Histogram of the logarithm of energy consumptions per capita from the left 
panel. The distribution appears log-normal since the logarithms of the observable (energy consumption per capita) is normal distributed.

	  
Figure 4. Lorenz curves for energy consumption in industry. Shown are (from bottom to top) the Lorenz curve for total energy consumption 
(lowest curve), per capita energy consumption (second lowest) and per capita energy consumption per sector/branch (second from top). 
Also shown is a straight line (dashed top curve) that corresponds to a uniform distribution without any heterogeneity. Lorenz curves are 
computed as introduced in the method section.
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ergy consumption in industry. In addition, we computed the 
Gini coefficints (Gini 1922) for the three curves in figure  4 
to quantify the heterogeneity and obtained (bottom-to-top): 
30 %, 29 %, 19 %. In order to be able to understand the mean-
ing of these numbers, let us note this inequality in energy con-
sumption per capita is comparable to the income inequality in 
central european countries, i.e. the Gini Coefficients for income 
inequality in western European countries are similar. Future 
analysis could give an overview of quantified heterogeneities 
in terms of Gini coefficients in energy consumption and look 
for external factors influencing these as is well-established for 
income inequality in countries.

heteRogeneIty In ADoptIon DeCIsIons
We studied heterogeneity in industrial energy consumption in 
the previous section and will turn to the decision to implement 
energy-efficiency measures (EEMs). We will only use the US 
data for the present section. 

Among the many determinants that affect the adoption of 
EEMs by firms, the EEMs’ profitability (e.g. in the form of pay-
back time) and its implementation costs are frequently found 
to have a major impact on adoption.

Here we compute the ratio of actually implemented EEMs in 
one category of similar payback times versus the total number 
of EEMs in the same category. A ratio or share of 0.5 means, 
that 50 % of the EEMs with similar payback times have been 
adopted by companies. Figure  5 shows the shares of imple-
mented and not implemented EEMs for different payback 
times and implementation costs. Where the shares of imple-
mented or not implemented EEMs do not add up to unity, the 
adoption decision of the remaining EEMs was pending or data 
was unavailable.

We observe from figure 5, that the likelihood of implement-
ing an EEM decreases with growing payback time and growing 
implementation cost, as expected. However, even for payback 
times longer than 10 years the implementation rate does not go 
to zero. This indicates that some companies adopted irrespec-
tive of their payback time and either did not consider payback 
times or did not decide based on profit maximization. The ab-
solute number of occurrence of this unexpected behaviour is 
not large and partially this might also be due to the fact, that 
some companies adopted all of the measures recommended 
by the auditors. The picture is more straightforward for the 

effect of implementation cost on the adoption decision. The 
right panel of figure 5 shows that the rate of adoption stead-
ily decreases with growing implementation costs.1 Interesting 
to note and again pointing towards the limitation of simple 
“profit-maximising” rationality, the adoption rate for EEMs is 
never larger than 60 % irrespective of the shortness of the pay-
back time or the magnitude of the implementation costs. The 
results in figure 5 go beyond common linear regression analysis 
which yields only the sign and magnitude of a relation but not 
the functional form of the relation between the variables under 
consideration.

According to neoclassical theory, a rational firm will invest in 
a project which exhibits positive net present value (NPV). The 
discount rate used in the NPV calculation should be the return 
available on other projects of the same risk class and does not 
depend on the firm’s characteristics. Therefore, the decision to 
invest in an EEM with positive NPV should be independent 
from firms’ characteristics (DeCanio and Watkins, 1998). How-
ever, a study by DeCanio and Watkins (1998) on firms’ decision 
to join Green Lights program shows that firms’ characteristics, 
such as number of employees and earnings per share, also in-
fluence their decisions.

Here, we chose to study the share of EEMs adopted by firms 
of different size for varying payback time and implementation 
cost of the EEM. The results are shown in figure 6.

The left panel of figure 5 shows the share of EEMs adopted 
by the smallest 10 % of all companies (circles) and the largest 
10 % of all companies (squares). These two subsets have been 
chosen to highlight the effect of firm size. The right panel shows 
the rate of adoption for the same subsets but as a function of 
implementation cost. Additionally, both panels show error bars 
for the different adoption rates. Since the data points in figure 6 
are obtained from binning the many individual adoption deci-
sions, the error bars have been computed as Poisson distributed 
errors, i.e. the uncertainty is given by

1. We used the variable “implementation status” of the IAC database to assess 
whether an EEM is implemented or not. There is limited time between recom-
mendation and verification of implementation. However, this limited time is not 
directly an explanation of the fact that only a few projects over $1 million were 
undertaken. If firms have not decided on the implementation, this is covered by 
the implementation status “pending” in the IAC database and projects with imple-
mentation status “pending” are not included in the figure. A project is defined as 
“implemented” if the implementation has taken place within 24 months after the 
audit, if not, it is “not implemented”.

	  
Figure 5. Adoption of energy efficiency measures for differing payback times and implementation cost. Implemented (circles) and not imple-
mented (squares) share of EEMs for different payback times (left panel) and implementation cost (right panel).
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 (5)

where ni is the number of data points in an individual bin. 
The error is very large for EEMs with very long payback time 
(longer than 10 years) since only a small number of EEMs fall 
into that class. The same is true for EEMs with very high im-
plementation costs (right panel of figure 6). However, for the 
bulk of the distribution of EEMs, i.e. for the majority of actual 
adoption decisions with payback times between one month 
and a few years and implementation costs between 100 and 
10,000 USD, the error in adoption rate is smaller or compa-
rable to difference in adoption rate. We performed similar 
analysis with different bin widths and different shares of firm 
size, e.g., the largest and smallest quarter of all firms, but the 
results remained unaffected. Studying a larger share of compa-
nies (e.g. 25 %) implies a larger sample and therefore a smaller 
error, but at the same time the difference to observe between 
the smallest and largest subset of companies also turns smaller. 
The difference in adoption rate was typically slightly smaller or 
comparable to the error for the bulk of the distributions. Thus, 
the firm size seems to have an effect on the adoption decision 
when comparing the largest and smallest firms, but the effect is 
not much larger than the measurement error and we cannot be 
certain. Interestingly, the effect seems to be opposite of what is 
typically expected. For both varying payback times and imple-
mentation costs the smaller firms actually implement a larger 
share EEMs than the largest firms.

Discussion and policy Implications
We empirically analysed and quantified different sources and 
degrees of heterogeneity in industrial energy consumption. 
We draw on data from the US energy audit program IAC and 
the German audit program “special fund for energy efficiency 
in SMEs”. Where the qualitative picture was well-established 
(firms differ largely in the structure of their energy consump-
tion), we found statistical laws and could quantify the degree of 
heterogeneity using Lorenz curves and Gini coefficients.

We found a huge degree of heterogeneity among firms’ 
energy consumption. Even when correcting for firm size, by 
taking into account the number of employees per firm, the re-
sulting specific energy consumption per capita varies substan-
tially across firms. Taking the industrial sector into account 

did reduce heterogeneity considerably, but still, a substantial 
level of heterogeneity remains even within the individual sec-
tors. While the industrial sectors considered are already very 
narrow (SIC at the 4-digit level), grouping firms by type of 
product could result in more homogenous groups, particularly 
when the production output is used as reference instead of the 
number of employees. This however would reduce sample size 
and faces methodological difficulties since many firms produce 
a product mix rather than a single product.

The huge variety of firms’ energy consumption illustrated 
in our analysis, needs also to be taken into account for policy 
design as well as for policy analysis. Policy impact assessments 
(ex-ante as well as ex-post) often calculate the impact in terms 
of energy savings and the related costs as average values for the 
entire sample of firms. Such neglect of the fact that firms’ ener-
gy consumption is very heterogeneous restricts potential policy 
recommendations. Allowing for different classes of firms with 
similar energy consumption, would be a first step to consider 
heterogeneity in such analyses and, thus, be more explicit about 
the impact of policies. While a program might be cost-effective 
for the average firm, this might not be the case for all firms. E.g. 
for firms with lower energy consumption the administrative 
costs might be higher than saved energy costs. In a second step, 
considering the entire distribution of firms’ energy consump-
tion would allow to identifying the “break even” firm, for which 
a program is cost-effective. Similarly, policy design can account 
for heterogeneity and improve cost-effectiveness of programs, 
by including threshold levels for program participation. From 
a different perspective, policies could focus on firms with high-
est energy consumption per employee within a given industrial 
sector, e.g. by treating the sickest patient first and most inten-
sively instead of treating all patients similarly.

Furthermore, the analysis shows that the adoption rate in-
creases with shorter payback time and lower implementation 
costs. While this result is expected and generally in line with 
the recent literature, the fact that even for EEMs with zero im-
plementation costs and payback periods of less than a month, 
adoption rates are not significantly above 50 % is rather as-
tonishing. These measures are known to the firm, they should 
be technically applicable as well as cost-effective. Quite fun-
damental other reasons must be behind the non-adoption of 
such a high share of measures. While this “energy-efficiency 
gap” has been widely researched in the past (see e.g. Jaffee and 

	   	  
Figure 6. Effect of firm size on adoption decision. Share of implemented EEMs for 10 % smallest (circles) and 10% largest companies 
(squares) for differing payback times (left panel) and implementation cost (right panel). The error bars are explained in the main text.

i in n=  
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Stavins 1994), the data set used in our analysis allows a more 
quantitative estimation of this gap. The analysis of the adoption 
rate further gives some indication that smaller firms tend to 
adopt a higher share of the recommended EEMs. This is some-
what contradictory to the general understanding that smaller 
firms face higher barriers such as access to capital for financing, 
internal know-how and staff (Gruber and Brand 1991). Pos-
sible reasons might be that decision processes in larger firms 
are more complex or simply that larger firms received a higher 
number of recommendations. Anderson and Newell (2004) 
analysed the same data set as presented in figure 6, using mul-
tivariate regression analysis. They did not receive a significant 
result for the variable firm size (in terms of number of employ-
ees). As a potential reason, they mention the relatively small 
range of firm sizes, which results from the fact that the program 
is addressed SMEs. Certainly, further data and research on the 
effect of firm size on the adoption of EEMs is required to allow 
more robust conclusions and policy recommendations.

Generally, heterogeneity in specific energy consumption per 
capita (corrected for industrial sector) entails either a very di-
verse product output within this sector or reveals differences in 
energy efficiency on the firm level. While these effects cannot be 
disentangled in our data set, without using firm groups based on 
products, it is very likely that both effects play a role. Due to this 
uncertainty, specific energy consumption values on the level of 
industrial sectors that are related to the number of employees 
do not provide a sufficient basis for the application of manda-
tory benchmarks. However, they might provide a first indicative 
comparison of a firm’s energy efficiency in comparison to other 
firms in the same sector and thus justify an energy audit.

Generally, conducting similar analyses using a larger data 
sample that also includes large firms could provide further in-
sights on the role of firm size.
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