
	 ECEEE 2012 SUMMER STUDY on Energy efficiency in industry  579

A function-based approach to stock 
modelling applied to compressed air 
systems

Simon Hirzel
Fraunhofer Institute for Systems and Innovation Research ISI
Breslauer Strasse 48
D-76139 Karlsruhe
Germany
Simon.Hirzel@isi.fraunhofer.de

Patrick Plötz
Fraunhofer Institute for Systems and Innovation Research ISI
Breslauer Strasse 48
D-76139 Karlsruhe
Germany
Patrick.Ploetz@isi.fraunhofer.de

Benjamin Obergföll
Fraunhofer Institute for Systems and Innovation Research ISI
Breslauer Strasse 48
D-76139 Karlsruhe
Germany
Benjamin.Obergfoell@isi.fraunhofer.de

Keywords
compressed air, bottom-up approach, minimum energy ef-
ficiency standards, Ecodesign Directive (EuP/ErP), policy-
induced savings

Abstract
Achieving current EU energy targets will require substantial 
improvements in energy efficiency across a broad range of in-
dustrial end-uses. While compressed air systems are important 
contributors to overall industrial electricity demand, substan-
tial energy-efficiency potentials have been identified in the 
past. Various policy measures can be designed to exploit these 
saving potentials. Yet when efficiency improvements depend 
on replacing existing equipment, the impact of policy meas-
ures depends not only on their design, but also on the structure 
of the addressed end-uses. Stock models may serve to provide 
quantitative data regarding the impact of different policy meas-
ures on energy demand. But data availability is often a limiting 
factor for using stock models, as information about production, 
age, operating conditions and thus the structure of the energy 
demand of specific end-uses is often only available to a limited 
extent.

In this paper, we therefore suggest a “function-based” bottom- 
up stock model approach. The basic idea of this modelling ap-
proach is to use both proxy functions to fit available data and 
to use expert estimations on functional parameters where little 
data is available. To a certain extent, this is common practice 
for some variables (e.g. for lifetimes), but we suggest to extend 
this idea to other energy-relevant characteristics. The advan-
tage of this modelling approach is to provide detailed results 
with only a limited number of assumptions that can be stated 
in a very transparent manner. It thus can also improve the un-

derstanding of energy demand and help to evaluate the impact 
of policy measures. We apply this approach to a case study on 
compressed air systems in the EU in order to illustrate its ben-
efits.

Introduction
Improving energy efficiency is considered one of the key pil-
lars in the development towards a more sustainable global 
energy system (OECD/IEA 2010). While there are substantial 
energy-saving potentials in the industrial sector in the Euro-
pean Union (Eichhammer et al. 2009; EC 2009), these poten-
tials are often unexploited despite their economic and envi-
ronmental benefits. This phenomenon is attributed to various 
barriers to energy efficiency and has been termed the energy-
efficiency gap (Hirst and Brown 1990; Jaffe and Stavins 1994; 
Sorrell et al. 2011). European policy-making recognises the 
opportunities related to energy-efficiency improvements by 
promoting different energy-efficiency policies. In its strategy 
for 2020, the European Commission sees the 20-20-20 goals 
as one of five headline targets for Europe, including a 20 % 
increase in energy efficiency (EC 2010). Next to this general 
goal-setting, specific action concerning the industrial sector 
has been taken among others by introducing the Ecodesign 
framework (Directives 2005/32/EC, 2009/125/EC), which 
results in regulations on important energy consumers such 
as electric motors, fans or circulators1. Another important 
consumer of electrical energy in industry are compressed air 

1. See http://www.eup-network.de/product-groups/overview-ecodesign/ for an 
overview.



4-098-12 Hirzel et al

580  ECEEE 2012 SUMMER STUDY on Energy efficiency in industry

4. UNDERTAKING HIGH IMPACT ACTIONS: TECHNOLOGY AND …

systems (CAS). In 2001, they were responsible for about 10 % 
of European industrial electricity consumption (Radgen and 
Blaustein 2001). Considerable cost-effective potentials to im-
prove energy efficiency in CAS have been identified (UNIDO 
2010; EC 2009; Radgen and Blaustein 2001), which amount 
to more than 30  % of the electricity consumption of CAS 
(Radgen and Blaustein 2001).

With regard to addressing such or similar energy-saving po-
tentials, policy-makers can consider various policy measures 
to actually meet overall efficiency goals. However, efficiency 
improvements related to technological replacements are only 
gradually diffusing into industrial energy systems, as the pen-
etration of these improvements is restricted by technologi-
cal replacement cycles. As a means of explicitly analysing the 
penetration rate of more efficient technologies, and thus the 
impact of related policy measures, quantitative stock model-
ling is required. Data availability is often a limiting factor in 
setting up stock models. Information on the installed number 
of units, their age structure, their operating hours or installed 
power is often only available to a very limited extent. Thus 
stock models addressing specific industrial applications are 
often rather crude and only allow reliable quantitative com-
putations of the penetration of efficiency improvements to a 
limited extent. Furthermore, many stock models only possess a 
limited degree of transparency since large amounts of underly-
ing data are handled, for example, only in unpublished data 
files. In such cases, the methodology may be mentioned, but 
the computations can hardly be repeated by third persons. Yet 
transparent stock models and methodologies can help to foster 
a better understanding of the effectiveness and actual savings 
related to different technological improvements triggered by 
policy measures.

In this paper, we therefore propose a function-based stock 
model approach which allows a) using either statistical distri-
bution functions instead of disaggregated or highly aggregated 
raw data or b) using simple functional descriptions where lit-
tle information is available. Independently of the method used, 
this approach has the advantage that it always states methods 
and results in a clear manner. To present this approach, we pro-
ceed as follows: we first provide initial background information 
on CAS, as we will analyse this end-use to illustrate the sug-
gested concept. We will then provide an overview of different 
types of stock modelling approaches. Against this background, 
we will detail the central ideas of our stock modelling approach. 
This is followed by a case study on industrial air compressors 
to illustrate our approach, before we discuss the related advan-
tages and challenges and then draw some general conclusions. 

Compressed air systems in industry
Next to natural gas, steam and electricity, compressed air is 
considered the fourth utility in industrial companies (Yuan et 
al. 2006). It is used for a large variety of different purposes, e.g. 
for pneumatic actuators, compressed air tools, as process air, 
for vacuum applications or for control purposes. With some 
exceptions for special applications, stationary industrial air 
compressors are usually powered by electric motors. Typical 
compressor types in industrial applications are helical-screw 
compressors, piston compressors and centrifugal compressors 
(Bloch 2006). While all components used in a CAS determine 

its overall energy demand, the compressor is the most relevant 
consumer of electrical energy in a CAS. Thus it can be used as 
a good proxy to analyse the energy demand of CAS. 

With regard to the energy demand structure of industrial 
CAS, comparatively little information is available and the struc-
ture of existing data is very heterogeneous. A rather detailed 
analysis for the European Union based on a simple stock model 
was carried out by Radgen and Blaustein (2001) who provide 
information on the energy demand and stock of air compres-
sors between 10 and 300 kW for the European Union and sev-
eral larger countries. Larger and smaller installations are ex-
cluded, the former usually being integrated in well-maintained 
systems and the latter being of little relevance for aggregate en-
ergy demand. The results of this study indicate an overall stock 
of about 320,000 compressors in the considered segment for 
the EU (in the boundaries of 2001), corresponding to an aggre-
gate electricity demand of 80 TWh or 10 % of overall industrial 
electricity demand. Other publications provide further indica-
tions on the structure of CAS in various countries: in a general 
assessment of energy demand by end-uses in Germany, Rohde 
(2010) provides an overview of energy demand for CAS in vari-
ous industrial branches. For the United States, an assessment of 
compressed air usage in 222 companies provides information 
on the installed compressor capacity in these companies, dis-
aggregated by industrial branch (US DOE 2001). A similarly 
structured study was carried out for Serbia with 52 companies 
(Šešlija 2011). For New Zealand, Neale and Kamp (2009) pro-
vide an estimated energy demand of CAS by different segments 
of installed compressor capacity and attribute a number of sites 
to each category. And finally, an analysis for Switzerland was 
conducted by Gloor (2000) who provides information on the 
number of sites with different installed capacities also differen-
tiated by branches.

While each of the cited studies provides some information 
on the structure of CAS energy demand, the aggregation levels 
and scope of the different studies are quite heterogeneous, thus 
making it difficult to compare the different studies, reuse the 
data and to provide overarching conclusions. Yet these stud-
ies suggested that actually very little knowledge appears to be 
available on the actual structure of energy demand of air com-
pressors in industry.

Stock models
Stock models can serve as a means to describe and analyse the 
structure of energy demand. They are mathematical descrip-
tions of how objects or sales build a stock of objects or products 
over time. As a general rule of stock modelling, the size of a 
stock of objects within a system is characterised by four param-
eters: the number of objects entering and leaving the system 
and the number of generated and destroyed objects within the 
system. The latter two parameters are not relevant here, thus 
the basic ingredients to model the stock of air compressors are 
a combination of information on production (entering objects) 
and product lifetimes (leaving objects). In stock models, time 
can be represented either discretely or continuously. In the case 
of discrete time, each step in time represents one year or other 
instances of time separated by constant differences. A simple 
and easy way to use a stock model is given by (see, e.g., Bucher 
et al. 2011):
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Here, M(t) is the total stock of objects in year t, N(u) denotes 
the sales in year u, t – u = a represents the age of the objects sold 
in the year t, and L(a) = 1 – F(a) is a survival function describ-
ing the relative evolution of remaining objects. The formula 
simply expresses the total number of objects in stock as those 
that still survive from earlier years u with their respective prob-
ability of survival in the year t. The age-dependent cumulative 
scrapping probability F(a) = ∫0<x<a

 f (x)dx is a function of the 
age-dependent scrapping rate f(x). The latter function could 
for example be a Weibull or simple exponential function. The 
survival probability L(a) could also be a simple stepwise func-
tion, such that all products younger than a lifetime T remain 
in stock and all older items are directly removed from stock.

A second kind of stock model, widely used in modelling bio-
logical populations, is based on the Leslie matrix (see Cush-
ing (1998) for an introduction). Let us denote the number of 
objects of (discrete) age a in year t by a time-dependent vector 
z(t) having components z(t;a) such that the total stock in year 
t is given by:

After one time step, the age distribution is altered because 
new objects enter with age 0, the existing items turn one year 
older and objects at age a are removed from stock with an age-
dependent probability L(a). The latter means that only some 
objects of age a survive until the next year. Taking this together, 
the time evolution for objects at age a reads:

z(t+1;a+1) = L(a).z(t;a) for a > 0, and

z(t+1;a+1) = N(t)

The time evolution can also be written in vector and matrix 
notation:

z(t+1) = L.z (t)

One difference between the two approaches2 is that the former 
needs the sales of many earlier years as input whereas the lat-
ter can be used with data from a starting year, say the present 
year, but instead requires the present age distribution of the 
stock under consideration. These stock models can be directly 
extended to more degrees of freedom, e.g. to different types of 
compressors or different power classes. Both models have in 
common a need for high quality data and are well-known and 
widely used in different contexts (Bucher et al. 2011, Cushing 
1998 and references therein). Already mentioned were the eco-
logical applications in mathematical biology that are applied to 
model single populations of fish, birds, bacteria and many oth-
er biological species (Cushing 1998). Quite often the interac-
tion between different species plays an important role, such as 
predator-prey or symbiosis relations. These can all be described 
by the stock models introduced above and strict mathematical 
results have been obtained, e.g. on the extinction of individual 

2. A third class of models uses time as continuous quantity. Then the latter ap-
proach can be used as well, but leads to a partial differential equation (see again 
Cushing (1998) for an introduction). We will not pursue the continuous time version 
further here.

species. With regard to applications in energy research, stock 
models can for example provide information on the number, 
efficiency and age structure of appliances such as refrigerators, 
buildings and other energy-related equipment (see e.g. Bucher 
et al. 2011). An essential step in such energy-related applica-
tions of stock models is, of course, to translate stock informa-
tion into information on energy consumption, thus adding ad-
ditional data to the stock information.

Both types of stock models require good and comprehensive 
input data. This includes data on sales of many earlier years or 
the current age distribution and age-dependent scrapping rates. 
This data is required for each product or end-use. While data 
is sometimes available, authors often do not provide the input 
data explicitly or only at very aggregated levels. For example, 
the large study of Radgen and Blaustein (2001) provides only 
two aggregated power classes (10–110 kW, 110–300 kW) across 
all types of compressors. This has two disadvantages: first, only 
very little of the information contained in the collected large 
dataset is used and much is simply lost by direct aggregation 
to a few classes of products only. Second, presenting data at an 
aggregated level reduces the transparency of a study and makes 
it difficult to reuse the data. Of course, not all individual data 
points collected in a study can be made available in a print, but 
a reasonable number of the input data could be shown and pre-
sented in a more reproducible way (see our proposal in the next 
section). In other cases, only very little information is actually 
known with certainty. Nevertheless, experts can often provide 
a direction or general trend as to what the actual situation is 
likely to look like. Even if such information does not have the 
same quality and reliability as detailed quantitative data, it can 
at least provide some basic insights into the general structure 
of a situation. 

We thus conclude from the present section that good and 
reliable stock models are mathematically available. Yet with 
regard to stock modelling in energy research, problems arise 
from a lack of data, from the quality of available data, from the 
way data is used and from the transparency of the data usage. 
With many projects collecting data in Europe and other regions 
of the world, e.g. on motor-driven systems such as CAS, re-
solving the former problems could simply be a matter of time. 
In contrast, the issue of making good use of the data and pre-
senting it transparently to other researchers needs efforts from 
the research community. The suggested approach in the next 
section is aimed at obtaining detailed, transparent and reliable 
stock models for energy research in the future.

Proposal for a function-based approach
To tackle the discussed issues of data handling and to provide 
an opportunity to include estimates in stock modelling, we 
propose using simple mathematical functions to provide input 
data for stock models. That is, we suggest using the existing 
mathematical framework of stock modelling presented above, 
but extend it either a) by introducing statistical distribution 
functions instead of disaggregated or highly aggregated raw 
data or b) or by using simple functional descriptions where 
little information is available.

Let us consider the first idea in more detail: Currently, stock 
models rely on classes of products or technologies based on 
aggregated raw data. We argue that this raw data could be used 
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more effectively and more transparently if statistical distribu-
tion functions were used to fit this data. Mathematically, we 
suggest replacing average values for some property P or the few 
class values Px by a continuous distribution function P(x). This 
takes into account that users or adopters of technologies often 
differ considerably in their characteristics or that even the same 
technologies or end-use can possess very different character-
istics, e.g. different sizes. As a means to describe detailed raw 
data, we therefore suggest matching the shape of input data by 
using probability density functions (pdf) f(x) and cumulative 
distribution function (cdf) F(x), and using these functions for 
computations. The cumulative density function F(x) for prob-
abilities with non-negative domain is defined as:

An illustration of this idea with regard to the power of air com-
pressors is provided in Figure 1. The most detailed, publicly 
available information on the structure of air compressor sales 
by compressor size appears to be provided by Gloor (2000) in 
Switzerland. This data provides an overview of sales informa-
tion of seven larger manufacturers in 1998, differentiated by 
compressor capacity and compressor types. The overall sales 
included in the sample amount to some 2,500 units, depicted 
in Figure 1 by dots. The available sample data is already aggre-
gated and includes compressors in a power range from 1.5 kW 
to 250 kW, segmented by 21 different classes of compressor size. 
The size of the segments increases with compressor size and 
the data suggests that the overall sales are dominated by small 
compressors.

As a mean to represent this data, we fit the data by a prob-
ability density function. For this purpose, we use the pdf of a 
log-normal distribution for the compressor power for several 
reasons: first of all, it shows acceptable agreement with the ob-
served data. Secondly, it is well known that the empirical dis-
tribution of firm sizes is approximately log-normal (Sornette 
2000). Assuming that large compressor powers are needed 
only in large companies, the distribution of compressor power 
should roughly be similar to the distribution of company size. 
Though we are aware of the fact that companies differ largely in 
their energy consumption and need of compressed air, irrespec-

tive of their size, we still use the fact that energy consumption 
per capita over different industrial segments is at least a peaked 
distribution (see Plötz and Fleiter (2012) for a more detailed 
discussion of this issue). Furthermore, the log-normal distri-
bution has a rather natural interpretation in the present case: 
many factors contribute to the installation of a compressor of 
certain power in a company. Such factors include, for example, 
the likelihood of belonging to a certain industrial branch, the 
probability to need some amount of compressed air, the size of 
the site and/or company or the product produced. The proba-
bilities for each group need to be multiplied, yielding a product 
of several roughly independent variables and thus justifying the 
expectation to find approximately a log-normal distribution of 
compressor powers. As the log-normal distribution is a good 
approximation for a distribution of several multiplied random 
processes, it seems appropriate here. In a log-normal distribu-
tion, the logarithms of the variable are normally distributed. 
The distribution function is heavy tailed, indicating that large 
compressors (in terms of power) are less likely, but not unlikely. 
The log-normal distribution has two numerical parameters, 
one for shape σ and one for scale µ. Its pdf is given by:

for x > 0 and zero otherwise

Assuming this functional shape and using a least-square fit to 
derive the parameters best matching the compressor sales leads 
to the fitting curve illustrated by the dashed line in Figure 1. 
We observe a good quantitative agreement between the data 
and the used log-normal distribution. Thus it is possible to re-
produce the information contained in the data sample approxi-
mately by providing the information on the used functional 
shape (i.e. a log-normal distribution) and the two parameters 
for this shape. The corresponding cumulative density function 
can be used to compute the share of the compressors that have 
a power below the specified value x.

After discussing this first idea of the function-based ap-
proach, we can now address the second idea in another exam-
ple: an important factor affecting the number of objects in a 
stock and the energy demand is the age structure of the objects 

   
 

Figure 1. Fit of compressor sales by compressor power. Left panel: Aggregate number of compressor sales (right vertical axis), correspond-
ing histogram and log-normal fit of the histogram data (left vertical axis). Right panel: Same data in a log-log diagram.

0

( ) ( )d
x

F x f r r= ∫  

( )2

2

ln1( ) exp  for 0 and zero otherwise
22
x

f x x
x

µ
σπσ

⎡ ⎤−
= ⋅ − >⎢ ⎥

⎢ ⎥⎣ ⎦
 



4. UNDERTAKING HIGH IMPACT ACTIONS: TECHNOLOGY AND …

	 ECEEE 2012 SUMMER STUDY on Energy efficiency in industry  583     

4-098-12 Hirzel et al

in stock. With regard to air compressors, there are no statistics 
available of the actual lifetime of air compressors in industry. 
Yet there are some indications on air compressor lifetimes in 
Radgen and Blaustein (2001) which suggest average lifetimes 
of 13  years for smaller compressors (power between 30 to 
110 kW) and 16 years for larger compressors (power between 
110 to 300 kW). While this information on lifetimes might be 
suitable to analyse average companies, one can observe that in 
practice sometimes air compressors remain considerably long-
er in operation. Therefore, it seems more realistic to use a range 
of different lifetimes by introducing survival probabilities in-
stead of using a single fixed value. Weibull functions are known 
to approximate empirical survival probabilities quite well (see 
Bucher et al. 2011 and references therein) and have for example 
been used to estimate lifetime distributions of residential appli-
ances (e.g. Lutz et al. 2011). The cumulative density function of 
a Weibull distribution can be described using the parameters 
k and T by:

For our case, this function describes how many compressors 
fail at the age of a. As we are interested in the share of compres-
sors still in operation, however, we can compute the survival 
function L(a) as:

The parameter T has a simple interpretation: if the age of the 
compressors is equal to T, then about 1/e = 36.8 % of the initial 
compressors are still in operation. An illustration of the func-
tional shape is given in Figure 2.

Though there is some uncertainty in determining parameters 
for the function, using the distribution function is clearly more 
realistic than assuming a fixed lifetime for all compressors. Us-
ing this kind of functional approach requires few additional as-
sumptions on lifetimes, but it can considerably help to improve 
the quality of stock estimates. For practical applications, one 
way to obtain the relevant parameters could be to propose and 
discuss different sets of parameters with experts to identify the 
values best reflecting the situation the experts judge most likely.

Using these two ideas, we think that it is possible to improve 
the quality of energy-related stock modelling approaches and 
to make the results more transparent. To illustrate the approach 
further, we complement the above given examples by addition-
al information in the next section and show how this modelling 
approach can be used to support the policy design process.

Application to industrial air compressors

General overview
In the following, we illustrate the suggested stock modelling ap-
proach in a case study concerned with industrial air compres-
sors in the European Union. As mentioned above, current stock 
models of air compressors, i.e. Radgen and Blaustein (2001), 
do not provide their entire set of input data and only used sim-
ple classes of compressors with average lifetimes and working 
hours. Our aim is go one step further by explicitly implement-

ing, among others, a distribution of compressor power that 
is then explicitly combined with stock information. For this 
purpose, we use the first of the earlier discussed stock model-
ling approaches. Similarly to the study of Radgen and Blaustein 
(2001), we focus on air compressors between 1 and 300 kW, 
thus excluding larger compressor systems, but including some 
smaller compressors. Note that as the main purpose of this case 
study is illustration; we only provide a very simple, aggregated 
analysis. Though we try to provide parameters within realistic 
orders of magnitude, many are based on assumptions. Thus the 
results we present here require further validation.

The elements illustrated in the left segment of Figure 3 are 
necessary to determine the number and age structure of the 
air compressors currently used in industrial companies. The 
remaining elements in Figure 3 illustrate the calculation of en-
ergy demand based on the stock modelling results. We already 
discussed the capacity distribution and the determination of re-
tired units above and will use them to calculate energy demand. 
The remaining elements will be discussed below.

An overview of the input data used for this analysis is pro-
vided in Table 1 along with sensitivity information used later 
on. As can be seen, only very little information is required to 
set up the stock model. Information on net production, growth 
rates, retired compressors and operating time is modelled by 
functions using estimated parameters as the quality of available 
data is not satisfying or no data is available at all (see next sec-
tion). The capacity distribution of the considered compressors 
is based on the above provided fit of compressor sales.

Stock modelling
As detailed above, the first kind of stock modelling approach 
requires knowledge about the net production of air compres-
sors and on the retirement of the considered compressors. With 
regard to estimating net production, some data is available 
from EUROSTAT, detailing compressor production, exports 
and imports by different classes of compressors. However, a 
brief review has shown that net production (production + im-
ports – exports) considerably fluctuates by unrealistic order of 
magnitude, both for different member states and for consecu-
tive years (Obergföll 2012). Furthermore, data is sometimes 
inconsistent (e.g. yielding negative net production) and the 
number of produced compressors appears to be very high (net 

 
 

Figure 2. Survival as function of lifetime. Illustration of the sur-
vival function L(a) for the base case (curve in the middle) and the 
sensitivity analysis (curve to the left and right).
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production of reciprocating compressors is larger than 1 mil-
lion units each year). Thus the statistics likely include other 
types of compressors than we intend to analyse here. For these 
reasons, we do not fit this data here, but assume a net produc-
tion of air compressors, amounting to N(s) = 25,000 units in the 
base year s = 2012. Furthermore, we assume that both a historic 
growth rate gh (1 % p.a.) and the future growth rate gf (0 % p.a.) 
of the compressor net production are constant and known, and 
that the net production N(t) in the year t can be derived by:

	 with

Combining this information with the above discussed Weibull 
distribution for compressor lifetimes, the overall stock of air 
compressor is calculated by:

Applying this equation to a period from 1960 until 2030 provides 
us with Figure 4, which illustrates the number of compressors by 
their age structure. For our purpose, the most relevant area is the 
years beyond 2000. Thus the main purpose of modelling earlier 
years is to obtain a suitable age distribution of the compressor 
stock. The steep increase in the slope from 1960 has to be seen 
as the result of the growth-rate modelling approach rather than 
actually corresponding to the historical development. Yet it il-
lustrates well how the stock is actually built over time. The rather 
homogeneous slope between 1980 and 2012 can be explained by 
the modelling approach of net production as well, as it reflects 
the steady increase in net production assumed earlier. Note that 
even though there is no increase in net production after 2012, it 
can be observed that the stock is still increasing until it finally 
reaches a plateau. Furthermore, it is worth mentioning that a 
certain share of the compressor built in 1960 for example is still 
in operation well after 1975. This effect cannot be considered 
when using stock models with fixed component lifetimes.

Net production
[units per year]

Stock
[units]Retired compressors 

[units]

Capacity distribution
[kW]

Operating time
[h]

Energy demand
[TWh]

Growth rate
[%] Stock 

calculation

Energy calculation
 

 

Information Unit Values Sensitivity analysis 
Net production [number] N = 25,000 Absolute change: ± 20% 
Historic growth rate [% per year] gh = 1 % - 
Future growth rate [% per year] gf = 0 % Absolute values: ±1% 
Retired compressors [function parameter]  T = 15, k = 5 Relative change of T: ± 20% 
Operating time [function parameter] a = 1,500, b = 75 kW Relative change: ± 20%  
Capacity distribution [function parameter]  µ = 3.066, σ = 1.513 (based on fit) - 

 

 
 

Figure 3. Elements considered in the case study. Left segment: Main elements used to calculate the stock of compressors. Right segment: 
Information on the calculation of energy demand.

Table 1. Overview of case study input data and data used for sensitivity analysis.

Figure 4. Stock of air compressors. Modelling results for the compressor stock between 1960 and 2030. Each colour shows the number of 
compressors still in operation that were produced in the same year.
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Operating time
While there appears to be general agreement that operating 
time increases with compressor capacity, estimates of average 
operating hours of industrial air compressors show a consid-
erable degree of heterogeneity for various countries (see e.g. 
Radgen and Blaustein 2001, Gloor 2000). For our analysis, we 
use a simple linear model whose parameter can basically be 
derived by first asking about the minimum operating hours a 
of air compressors in industry, on the one hand, and by asking 
for the minimum compressor capacity that is typically running 
in full-time operation in industrial companies b, on the other 
hand. With these two parameters available, the annual operat-
ing hours h(p) can be derived for any given compressor powers 
p in kW with (Figure 5):

Figure 5 shows the resulting graph for a minimum of 1,500 op-
erating hours per year and a minimum compressor capacity 
with full-time operation of 75 kW.

Energy demand
Combining the stock information, the capacity distribution 
and the information on operating hours allows calculation of 
energy demand E(t) of the considered air compressors using 
the following equation:

The first factor in the integral describes the share of compres-
sors with an installed power p. Note that the probability density 
function f(p) has to be renormalised if only a certain segment 
of the probability density function is considered (here: installed 
power between 1 and 300 kW). The second factor is the actually 
installed power p and the third factor h(p) describes the operat-
ing hours of the considered segment. Applying this equation to 
a sequence of years provides energy demand by age segment as 
shown in the left panel of Figure 6; as the capacity distribution 
remains independent of time, so far, energy demand has the 
same shape as the stock of compressors, as shown in Figure 4. 
Another representation of energy demand is provided in the 
right panel which structures overall energy demand by com-
pressor capacity segments. It is worth mentioning that based 
on the compressor size distribution as provided in Figure 1, the 
share of compressors above 100 kW in the overall stock is well 
below 50 %. Nevertheless, due to the higher installed power 
and the higher operating hours of the larger compressors, they 
are responsible for about half of total energy demand.

Sensitivities
As pointed out, the parameters used for the energy demand 
calculation are based on rough estimations. To analyse the ef-
fect of uncertainties related to the values of the parameters, we 
do some sensitivity analyses that can be easily carried out us-
ing this function-based approach. Figure 7 shows the effects of 
different changes in the input parameters provided in Table 1. 
The modelling shows that the assumed uncertainty in net pro-
duction has a very substantial impact on the overall energy de-

mand of the analysed compressors. A similar observation can 
be made for uncertainties concerning compressor lifetimes. On 
the other hand, a change in operating hours would not affect 
energy demand substantially. This can be explained by looking 
at the structure of energy demand by compressor size segment 
(Figure 6, right panel): Compressors with powers above 100 kW 
substantially determine energy demand. Changing parameters 
that mainly affect operating hours for smaller compressors will 
therefore only affect overall energy demand to a limited extent. 
With regard to future growth rates, one may note that the +1 % 
sensitivity is identical to the historic growth rate, thus energy 
demand is continuing to rise similarly as in the year before the 
base year. On the other hand, a declining market (-1 % per year) 
for air compressors only gradually reduces energy demand. 
Note that it is also possible to combine the different uncertain-
ties into one plot to provide an overall corridor of uncertainty. 
Note further that the uncertainty intervals have only been cho-
sen symmetrically for reasons of simplicity.

Energy forecast considering policy measures
After discussing the compressor stock and its energy demand, 
we can return to our initial idea of using the proposed stock 
model approach to analyse policy measures. As a baseline, we 
keep the above provided projection for energy demand, es-
sentially corresponding to a “frozen-efficiency” scenario. We 
furthermore discuss two policy scenarios: in the first scenario 
(“fixed improvement”), we assume that all newly introduced 
compressors after 2012 have a constant reduced energy con-
sumption corresponding to 90 % of the energy demand of the 
compressors from 2012. In our modelling approach, this trans-
lates into a reduction of the capacity of new compressors by 
10 % (but without affecting their operating hours), thus:

with 

 
 

Figure 5. Operating time. Illustration of the assumed installed 
power of the air compressors for the base case (curve in the mid-
dle) and the sensitivity analysis (curve to the left and right).
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Figure 6. Energy demand development of the air compressors. Left panel: Energy demand due to the compressors produced in the same 
year (similar shape as Figure 4). Right panel: Energy demand by installed power. Large compressors (above 100 kW) are responsible for a 
considerable share in overall energy demand despite their comparatively low share in the overall number of compressors.

Figure 7. Sensitivity analysis. Upper left panel: Change of net production by 20 percent. Upper right panel: Change in energy demand 
after modifying the future growth rate. Lower left panel: Change of operating hours. Lower right panel: Change of assumptions on average 
lifetime for the compressors, considerably affecting energy demand, as well.
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develop a proxy which can easily be used to analyse energy de-
mand for various end-uses. As shown, such a functional shape 
with few parameters can also be used for quantitative compu-
tations when only little information is available, if reasonable 
parameter estimates can be provided. In both cases, the use of 
a few instead of many parameters can substantially increase the 
transparency of stock model calculations. Only two parameters 
(namely scale and shape) are needed to completely characterise 
the data used in the stock model. For the above given sam-
ple of compressor sales, for example, it is not required to pro-
vide 2 times 21 parameters (class definitions and values), but 
only the information that a log-normal fit with μ = 3.066 and 
σ = 1.513 was used. While the amount of original data in this 
example is very small, this approach can prove very beneficial if 
the sampled dataset is large. With regard to bottom-up energy 
demand models, for example, data handling can be a very time-
consuming factor in the calculation if it has to be done in each 
calculation run. If the suggested approach is adopted in larger 
bottom-up models, it could be very beneficial as it reduces the 
amount of data handling in the modelling process. Instead of 
using the data in each run (including the necessary database 
operations), one might process the input data once and then 
only change the resulting parameters if the detailed input data 
is changed. Thus modelling efficiency can be increased. The 
numerical simplicity of the presented approach has for exam-
ple been successfully used to model sales and stock of differ-
ent vehicle drives, taking the large heterogeneity of car users 
explicitly into account (Plötz et al. 2012). Another advantage 
lies in the very easy analysis of sensitivities and uncertainties. 
If only a few parameters have to be adjusted instead of a whole 
dataset, sensitivity calculations can often be done more effi-
ciently. With regard to uncertainties, one functional shape can 
also be replaced by another type of function. Furthermore, the 
small number of parameters and the explicit use of distribu-
tion functions make error analysis, both of numerical as well 
as analytical errors, much easier.  

On the other hand, there are also some limits to this kind of 
modelling approach. First of all, the function-based approach 

Such a scenario could for example correspond to defining min-
imum energy performance standards, where certain thresholds 
are fixed that are only revised after a certain period of time.

As a second scenario (“continuous improvement”), we as-
sume a gradual improvement of 2 % per year after 2012 for 
new compressors, as compared to the compressors in the year 
before:

with 

Such a scenario could for example represent a voluntary agree-
ment scheme, obliging compressor manufacturers to improve 
the compressors or CAS every year.

The results of both scenarios are shown in Figure 8. Using the 
stock modelling approach, one can observe that the improve-
ments from the second measure lead to higher reductions in 
energy demand after a certain period of time. While the energy 
demand of new compressors in 2017 is approximately equal in 
both scenarios, it is important to note that it takes another five 
years before both scenarios actually lead to the same energy 
demand. Nevertheless, the smaller but gradual improvements 
in energy efficiency from the second measure will eventually 
outweigh the larger improvements from the first measure in 
the long term. While both scenarios only serve for illustration, 
they underline the importance of considering the actual stock 
development when discussing different policy options.

Discussion
After presenting the model idea and a sample case study, ad-
vantages and drawbacks of this approach can be discussed: 
One major characteristic of the suggested approach is that it 
can handle both very detailed and very rough information. By 
reducing data to its most relevant information, it is possible to 

 
 Figure 8. Scenario analysis. Left panel: Energy demand by CAS over time for three different (policy) scenarios. Frozen efficiency corresponds 
to the energy demand data as shown in Figure 6. Right panel: Zoom of the left panel. Note that the two scenarios with improvements do not 
cross until after 2022.
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energy demand models for industrial applications. This could 
for example help to extend such bottom-up models by con-
sidering the heterogeneity of different end-uses and end-users 
while avoiding adding considerable additional amounts of in-
put data to already data-intensive models. There are many and 
varied possibilities to further utilise and apply this suggested 
approach.
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