

Co-funded by the Intelligent Energy Europe Programme of the European Union

GREENFOODS Branch Concept for enhancing energy efficiency in the Food and Drink industry

Christoph Brunner, Jürgen Fluch, Konstantin Kulterer, Wolfgang Glatzl

Challenges for energy audits in industry

Optimization of the thermal energy supply is very complex:

- ⇒ Grown company and infrastructure with unreliable data of the status quo (especially for SMEs)
- ⇒ Only average data available
- Measurements which are cost and time consuming necessary
- Processes at different temperature levels and operating times have to be integrated
- Combination of different heat supply technologies for optimized energy production have to be considered
- ⇒ Difficult to estimate a-priori the benefit of an energy audit

GREENFOODS

- Zero fossile CO₂-Emissions in the European Food and Beverage Industry, Duration: 28 months (04/2013 – 07/2015)
- Participating countries: Germany, Spain, UK, France, Poland, Austria
- Adressed sectors: meat, beverage, dairy, bakery, cereals, baby food, animal feeds, fish

Co-funded by the Intelligent Energy Europe Programme of the European Union

• Identified Challenges and solutions

- ⇒ Low energy efficiency, high energy costs and large dependency on fossil fuels
- ⇒ Missing awareness and knowledge about potential
 - Efficient process technologies
 - Heat integration
 - Integration of renewable energy

Challenges

Identified challenges and solutions

- ⇒ Ineffective and missing funding and financing systems
- ⇒ Missing best practice examples in different sub sectors
- ⇒ Missing contact and information points
- ⇒ Missing Know-how-transfer of identified solutions
- \rightarrow Need of a branch concept with tailor-made solutions

Objectives of Programme

• Development of the GREENFOODS branch concept

⇒ Guideline for the user to identify tailor-made solutions for "green production" for SMEs in the food and beverage industry

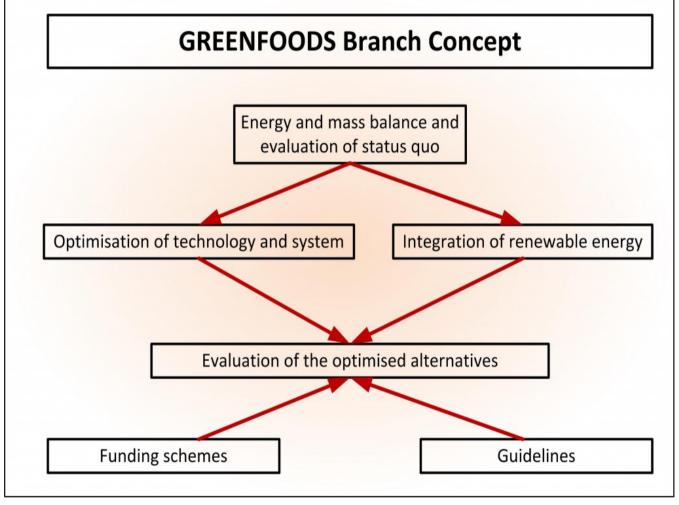
GREENFOODS training module

Knowledge about smart and green technologies in the food and beverage sector will be trained by introducing participants into the use of the GREENFOODS branch concept

Special funding schemes

⇒ Facilitate the implementation of identified energy efficiency potentials and renewable energy sources in SMEs

Virtual Energy Competence Centres


⇒ Contact points within a European network

Performance of energy audits as basis for the branch concept

Overview of GREENFOODS Branch Concept

Mass Flow Balance

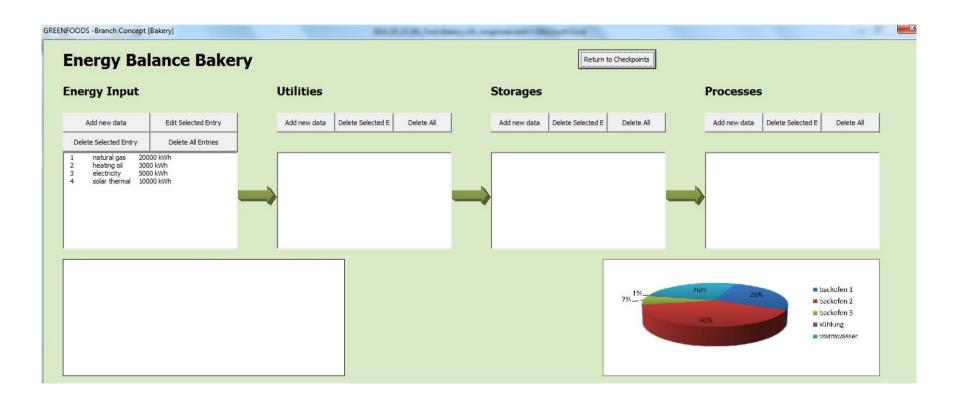
- Generation of energy and mass flow balance of the status quo
 - ⇒ The basic version will roughly calculate the energy consumption of the processes and the efficiencies while
 - ⇒ in the *detailed version* the information input over predefined shapes that represent the typical unit operations in the respective branch will generate more significant results.

General Data Input

GREENFOODS - Bakery Branch Concept - Step 1: General Data

Overview

Welcome to the GREENFOODS Bakery Branch Concept! Enter your individual data to access energy optimization suggestions.


	Baking Loss [%]	Flour [t/a]	Water [t/a]
Bread	0,1	20	48
Small Pastry	0,12	40	48
Fine Pastry	0,1	80	96
Other baked goods	0,23	160	192

Total Water Demand	200	[m³/a]
		Step 2: Energy Flow

Energy Balance of Status Quo

Utility and Process Definition

GREENFOODS > Boiler	d -			84,8,5,8,5	at Salary of Longton	a sur Mennel	-		
Boiler					Confirm	Return			
Basic Data		5							
Equipment Name	Delta	Nominal Power			ting Start	2	hh		
Year of Commissioning	2001	Part Load Factor	52,3	% Opera	ting End	10	hh		
Boiler Type	thermal oil boiler 👻	Flue Gas Temperature	220	°C Opera	ting Days per Week	5	d/w		
	,	Lambda	1,3	Opera	ting Weeks per Year	48	w/year		
		O2-Content	-	Oper	ating Hours per Year	1920	h <mark>/</mark> year		
		Boiler Efficiency	95	%		1			
			1						
Energy Source			Energy Input Defir Share in [%]	ned Energy Input	25000				R
Primary Energy Source	natural gas	-	80	8456	T 20000 15000				
Energy Source	electricity		20	2114	로 15000				
Energy Source		-			10000 Election			- E	Edited Boiler
	1				1000			- E	Energy Assigned
		Total Energy In	nput	10.570	0 —	ei as	2	T	Fotal Energy Input
Heat Recovery		Total Energy O	utput	10.042		ing o	triait	E	
Existing Flue Gas Heat	Peroverv					natural gas heating oil	electricity	solar thermal	
IT Existing Flue Gas field	RELOVELY							sola	

REENFOODS - Baking Ove	en	-				CRI For America Action		and the second second
Baking Ov	en					Confirm	Return	
Basic Data			1					
Equipment Name	Megator I	-	Nominal Power	1500	kW	Operating Start	2	hh:mm
Year of Commissioning	2001	-	Boiler Efficiency	<u> </u>	%	Operating End	10	hh:mm
Baking Oven Type			Part Load Factor	-	%	Operating Days per Week	6	dd
Baking Area	20	m²	Flue Gas Temperature	200	°C	Operating Weeks per Year	50	ww
Energy Source								
Primary Energy Source	gas	•	2000					
Energy Source			i					
Energy Source								
	,							
Dough Input								
Baking Good	bread 👻]						
Dough Input	100	kg/day			GREENFOODS - Process Overview		BERTHER, No. 2000, -1, 1-1	search Mitter and The
Dough Input Temperature	20	°C				typical processes	Return	
Baking Loss	10	%			Baking Oven	Fermentation		List of processes Edit Selected Entry Delete Selected
								1 Megator I kWh 2 Megator II kWh 3 Stikken kWh
Steaming			20					
Steaming Method	steam	•]		لمم لمم لمم لمم			
Fresh water temperature	20				all kinds of baking oven can be defined here Space Heating	enter text Water Demand		
Steaming Input	100	liter/day ?						
Heat Recovery								
Existing Flue Gas Heat	Recovery							
Existing Vapour Conder	nser				define the heating demand of the buildings connected to the central energy supply of th production	e.g.: crates washer, laundry, cleaning of equipment/broduction halls/machinery, truck washing, private consumption		1

Benchmarking, Optimization of Production

- Over benchmark comparisons the user will get as a result how efficient the whole production as well as several processes are operated and at the same time suggestions how these can be optimized on which level.
- For the optimization of production and processes different alternatives are suggested based on the status quo. These alternatives may refer to one of the following 3 areas:
 - ⇒ Technology optimization
 - ⇒ System optimization
 - ⇒ Integration of renewable energy sources

Technology Optimization

- Technology optimization will be suggested if key figures of the status quo suggest a **potential technology upgrade**. This step is based on a documentation of guidelines for the implementation of best available technologies (BATs)
- http://www.green-foods.eu/wiki/
- http://wiki.zero-emissions.at/index.php?
 title=Subsection_DA_food

http://www.green-foods.eu/wiki/

1 1 4 1											∇		▼ Go							
uche oder Adresse											V	7	¶ ¶ (30)	ogie				₽ ☆ 🖻	♥ 11	ſ
esucht 🥹 Erste So	chritte <u>Ы</u> Aktuelle Nach	nrichten																		
10000	Back to Greenfoods	Wiki																		
e y portal vents langes lage			milk products	fruits/ vegetables/ herbs	sugar	beer	fats/ oils	chocolate/ cacao/ coffee	starch/ potatoes/ grain mill products	bread/ biscuits/ cakes	wine/ beverage	meat	fish	aroma	baby food		solar integration	emerging technologies	proc intensifi	
	Unit Operations	Typical processes	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INFO	INF	0
ch		Cleaning of bottles and cases	x	x		x	x				0	o	0							
	CLEANING	Washing products		x	x		x		x		x	x	0							
		Cleaning of production halls and equipment	x	x	x	x	x	x	x		x	x	0	0						
	DRYING	Drying	x	x	х		x	x	x	x		x								
	EVAPORATION	Evaporation	x	x	х		x	X	0		0	0	0							
	AND	Distillation					x		0		0			х						_
	DISTILLATION	Deodorization					x	x												
	BLANCHING	Blanching		x					x											
	PASTEURIZATION	Pasteurization	x	x		x					0	0	0							
	STERILIZATION	Sterilization	x	x					0		x	0	0							_
	COOKING	Cooking and						~	v											

System Optimization

- System optimization concerns to the areas of heat integration, either directly via heat exchangers or indirectly via heat storage units.
- Therefore, advanced **Pinch analysis algorithms** (developed within the GREENFOODS consortium) will be executed to identify the heat integration potentials.
- In addition, the efficiency of heat and cold supply, as well as optimization approaches for the reduction of electricity consumption, e.g. by electric motor system optimization (e.g. compressed air systems) will be accounted for.

Integration of Renewable Energy

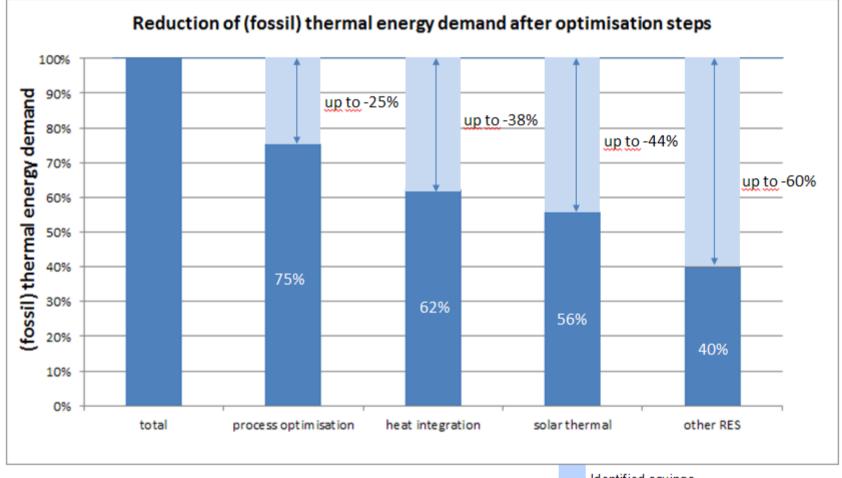
- The **biogas potential** is evaluated based on the previously identified typical waste streams of the respective branches (e.g. spent grain in breweries).
- A solar thermal simulation tool has been implemented that allows the definition of a variable heat load that can be linked to a previously defined heat sink of the Pinch analysis. The solar tool considers collector efficiency of different technologies as well as storage and heat exchanger performances and allows a quick but detailed analysis of the collector field size.
- CHP (Combined Heat and Power), ACM (Absorption Cooling machines) and heat pumps are proposed and sized if key energy figures after status quo and the first two optimization steps (technology and system optimization) suggest a practical implementation.

BREWERY GOESS

- Solar assisted mashing process
- 1.500m² ground mounted flat plate collectorfield
- 200m³ pressurized hot water energy storage tank

4.6 million pints of beer per year brewed with the power from the sun*

* assuming 60 MJ thermal energy consumption per hl of beer in the brewery Severse: AEE INTEC


Göss – erection of the collector field

Source: AEE INTEC

Source: Solarfoods

Identified savings

Conclusion

- Big potential for energy efficiency support of a standardized optimization procedure – branch concept
- Technologies do influence overall heat management to a great extent
- High potential for intensification in the food industry heat exchanger improvement, but also new process design
- Need for evaluating new technology concepts / new engineering concepts for
 - ⇒ Higher energy efficiency
 - ⇒ Better integration of renewable energy / solar process heat
- Increasing number of solar process heat
- Need for detailed thermal storage planning for
 - ⇒ Efficient heat recovery
 - ⇒ Better integration of renewable energy / solar process heat
- Continuous processes and new engineering concepts will enhance efficiency & solar potential for the food industry in general

Contact Information

• Christoph Brunner

AEE - Institut für Nachhaltige Technologien Feldgasse 19 A-8200 Gleisdorf Email: c.brunner@aee.at

 Jürgen Fluch, AEE - Institut für Nachhaltige Technologien Email: j.fluch@aee.at

Konstantin Kulterer

Austrian Energy Agency Mariahilfer Straße 136

1150 VIENNA

Online:www.green-foods.euTwitter:GREENFOODS_AEE,#GREENFOODSprojectFacebook:GREENFOODS Project