
INDIRECT AND UNINTENDED INFLUENCE OF ENERGY POLICY INSTRUMENTS ON ENERGY EFFICIENCY INVESTMENT

An analysis for the pulp and paper industry

Payback time [years]

Content

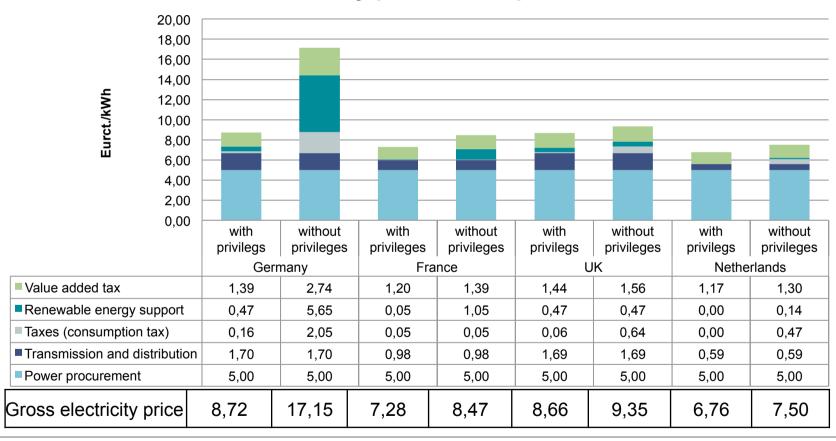
- Background & Problem statement
- Assumptions
- Results
- Conclusions

Background & Problem statement

- Policy driven levies (e.g. for renewables)
- Preferential treatment
- Investigation EU-Commission
- How strong is the influence of privileges with regard to policy-driven power price components for industrial electricity consumption on the profitability of energyefficient investment?
- How strong does this influence differ between the compared member states?

Background & Problem statement

- Energy intensive industry
- Paper Production
- Market situation
- 4 countries
- Exemplary analysis for a sample paper mill
- Refining
 - only stock preparation (no pulp production)
 - exchange of the refiner into a more energy efficient one

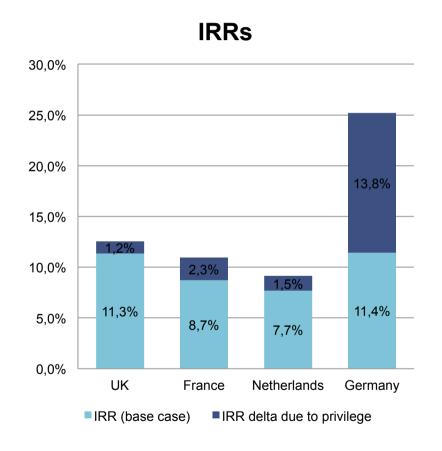

Assumptions

Production volume:	20.000t/a		
Electricity intensity:	1.300 kWh/t		
Electricity demand:	26 GWh/a		
Peak demand/ connection capacity:	3 MW		
Full load hours:	6.000		
Share of electricity cost in gross value added:	> 20%		
Share electricity cost in turnover:	> 5%		
Share of electricity cost on product cost:	< 50%		
Grid connection	> 250 kVA		

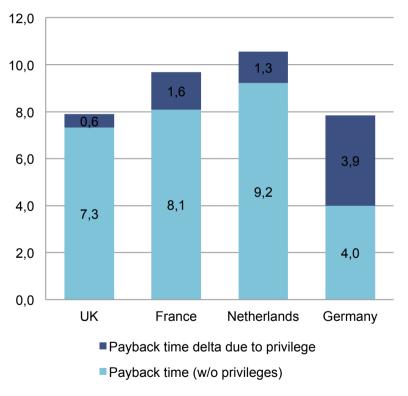
- Electricity price components
- Transmission and distribution
 - No privileges considered
- Taxes (consumption tax)
 - Tax reductions in Germany, Netherlands and the UK
- Renewable energy support
 - Privileges applied in Germany, France, Netherlands
- Outcome: privileged and non privileged electricity prices

Assumptions

Electricity price assumption

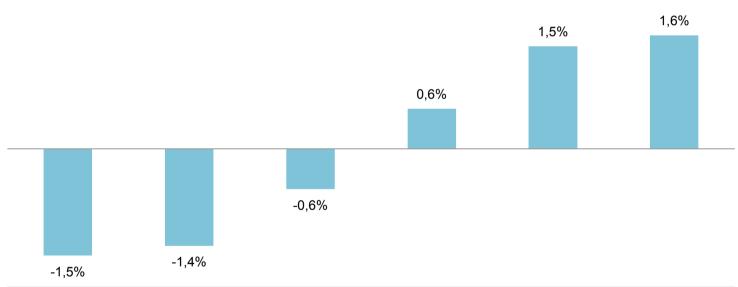

Assumptions

Technical Assumptions for the change of the refiner			
Saving potential [MWh/t]	0.03		
Annual increase of electricity price [%]	1.00		
Minor overhaul (every year, % of total investment)	0.5		
Major overhaul (after 10 years, % of total investment)	5		


Financial Assumptions				
First year of operation				
Depreciation years				
Initial project costs				
Specific project hardware cost [euro/t of capacity]				
Project development cost (% of hardware cost)				
Project implementation cost (% of hardware cost)				
Origin of funds				
Shareholders' equity (equity ratio) [%]	100			

- Internal rate of return (IRR) &
- Static payback time for each country

Results



Payback time [years]

Results

Sensitivity of IRR

	Electricity savings -10%	Investment cost +10%		Electricity price increase +50% per year (1,5% instead of 1%)	Electricity savings +10%	Investment cost -10%
Delta in IRR	-1,5%	-1,4%	-0,6%	0,6%	1,5%	1,6%

Conclusions

- IRR deviates up to 3.7% among compared countries
- IRR deviation due to privileges up to 2.3% in the UK, France and Netherlands
- IRR is in Germany 13.8% lower due to privileges compared to the unprivileged case
- IRR is highest in Germany
- High privileges may cause uncertainty
- Answering with efficiency?
 - Comparing the highest and lowest price (30%difference)
 - Increase of 23% in electrical efficiency necessary
 - No other benefits are benchmarked