What about the long term? Using experience curves to describe the energy-efficiency improvement for selected energy-intensive products in Germany

Nils Brucker, Tobias Fleiter, Patrick Plötz Fraunhofer Institute for Systems and Innovation Research, Karlsruhe

eceee Industry Summer study - 2014

Agenda

- 1. Objective and approach
- 2. Data used
- 3. The experience curve approach
- 4. Results
- 5. Conclusions

Objective and approach

Objective and approach used

Objectives:

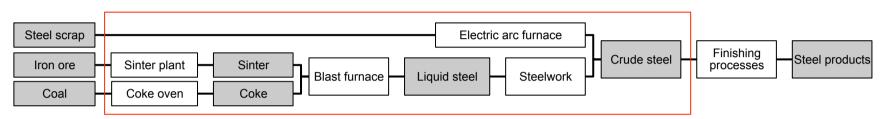
- What are the long-term energy efficiency trends in the German energy-intensive industry?
- Can experience curves be used to describe the energy efficiency progress in industrial production?

Approach in four steps:

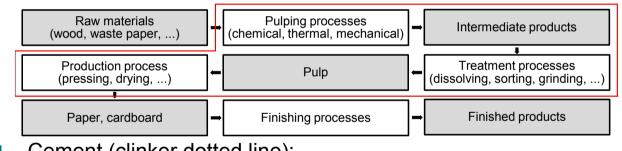
- 1. Selection of products/industries: pulp and paper industry, production of crude steel, cement, clinker and primary aluminium
- 2. Gather time series data (~1950 to 2010) for energy efficiency (SEC in GJ/t] and experience indicator (production in t/a)
- 3. Linearize (log) and fit experience curve function to observations using OLS
- 4. Calculate learning rates and compare among products

Data used

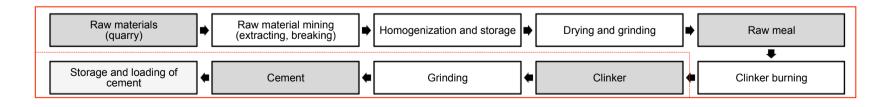
Overview of input data


Industry/product/process	Scope	Type of energy	Time period	No. of SEC data points	
Pulp and paper industry	Sector	Final energy	1955-2008	4	
		Electrical, thermal, final and primary energy	1973-2008	36	
Cement	Product	Electrical, thermal, final and primary energy	1951-2012	59	
Clinker	Product	Thermal energy	1951-2011	61	
Crude steel	Product	Primary energy	1960-2011	52	
Primary aluminium electrolysis	Process	Electrical energy	1947-2009	33	

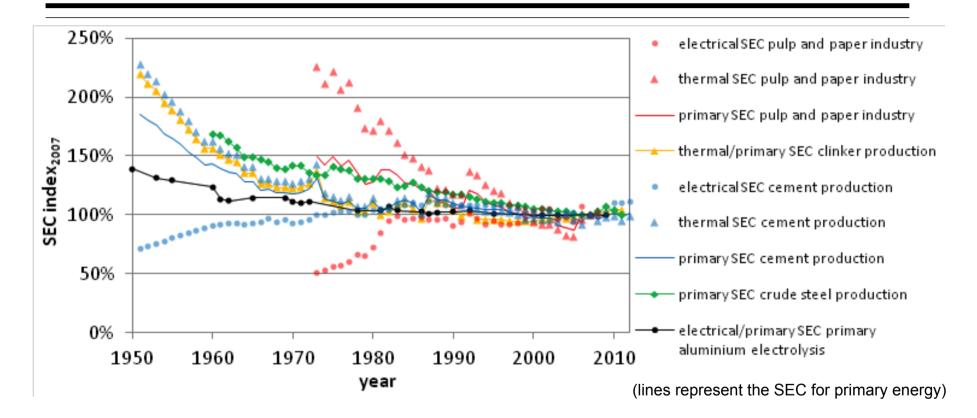
- The scope (system boundary) depends on the data availability (e.g. for crude steel a distinction in electric and oxygen steel was not possible)
- In some cases complete time series of SEC data were available (pulp and paper, steel), in other cases BAT data from various sources was used (primary aluminium)
- Distinguishing electricity and thermal energy was not possible in all cases (e.g. crude steel)
- Calculation of **primary energy** done by multiplying electricity consumption with three



System boundaries by product


Crude steel

Pulp and paper:



Cement (clinker dotted line):


SEC over time

- Mostly decreasing SEC (except for electricity in paper and cement)
- Faster decrease at early stage, saturation after 2000

Production over time

- Crude steel, cement, clinker and primary aluminium experience a fast increase before 1970 and stagnation afterwards
- Only paper shows a continous increase until 2007

The experience curve approach

The experience curve approach

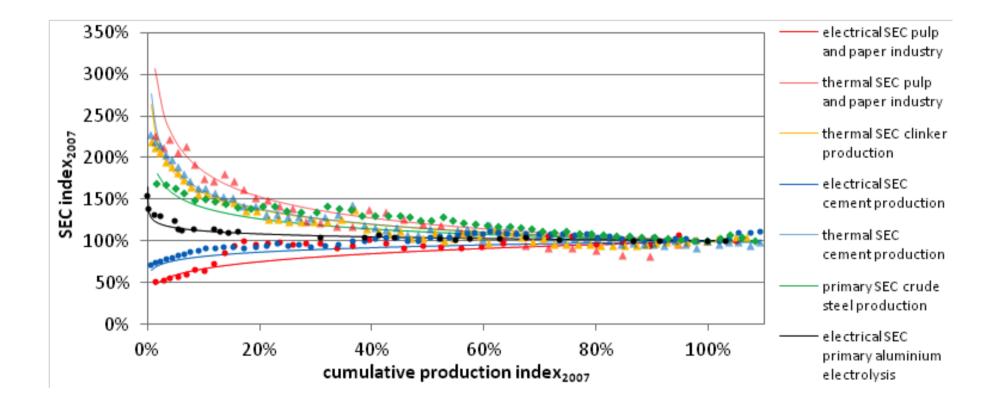
- General Idea: Tasks are conducted more efficiently, the more frequently they are performed -> "learning-by-doing" or more general: "technology learning"
- More specific: Improvement in production efficiency depends on the (cumulative) experience gained
- Past applications:
 - Time and cost-efficiency in manufacturing processes
 - Decline of investment costs of energy supply technologies (IEA 2001, McDonald and Schrattenholzer 2001, Neji 2008)
 - Some authors look at energy-demand technologies (Weiss et al. 2010a and 2010b, Jardot et al. 2009, Jakob and Madlener 2010, Schall and Hirzel 2012)
 - Only one study found analyzing the progress in demand-side energy-efficiency: Ramírez and Worrell (2006) analyzing the global fertilizer industry

Formulation of learning curve function

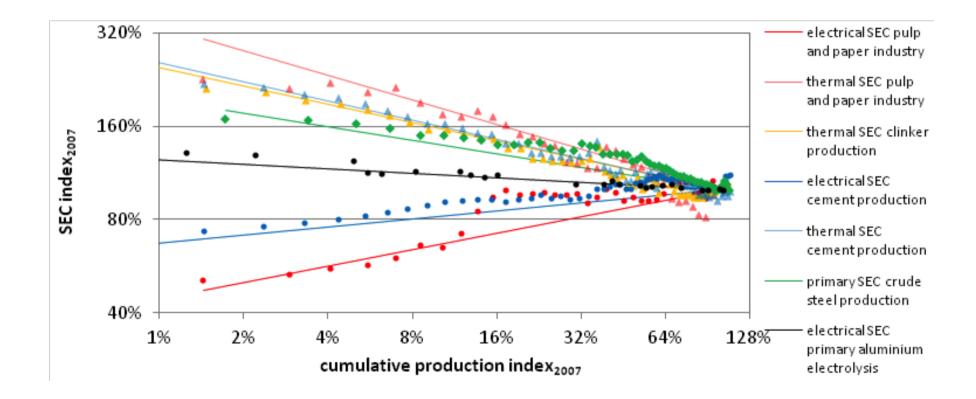
- Choice of indicators similar to Ramirez and Worrell (2006):
 - Performance indicator: SEC as measure of energy efficiency
 - Measure of cumulative experience: cumulative production
- $SEC_t = SEC_0 * CP_t^b$ Learning curve function:

 SEC_{t} = Specific energy consumption in year t CP_t = the cumulative production in year t $SEC_0 = SEC$ in the first year of production b = experience index.

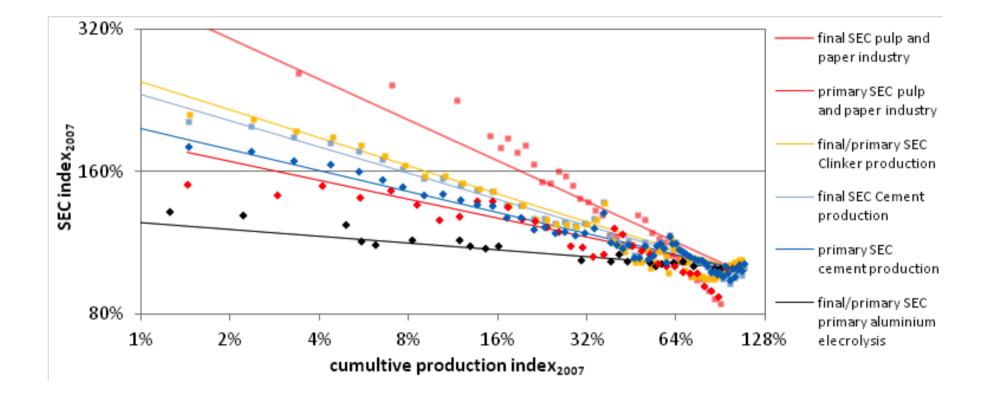
- Linearized function: $\log SEC_t = \log SEC_0 + b * \log CP_t$
- **Learning rate**: decrease in SEC for each doubling in cumulative production:


$$LR = 1 - 2^b$$

Results

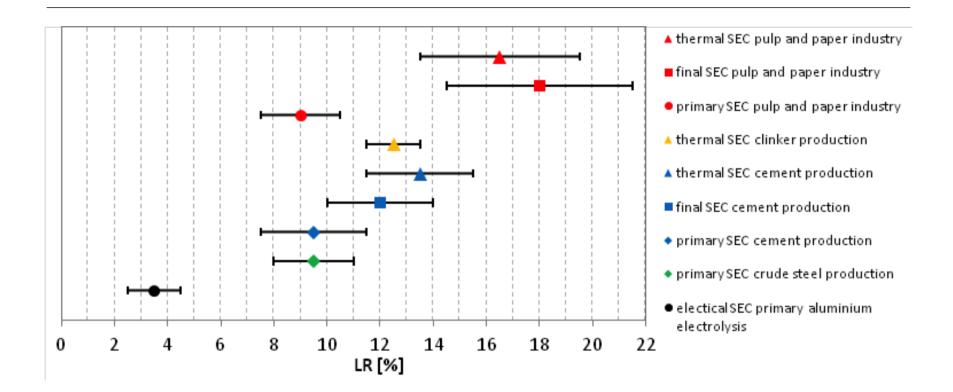


SEC related to cumulative production



SEC related to cumulative production in log scale for electricity and thermal energy

SEC related to cumulative production in log scale for primary and final energy


Learning rates and goodness of fit

Industry/product/process	Electricity		Thermal energy		Final energy		Primary energy	
	$LR \pm 2\sigma_{LR}$	R²						
Pulp and paper industry*	-13.0 ± 2.0 %	0.79	16.5 ± 3.0 %	0.90	13.0 ± 2.0 %	0.86	9.0 ± 1.5 %	0.84
Clinker			12.5 ± 1.0 %	0.93	12.5 ± 2.0 %		12.5 ± 3.0 %	
Cement	-6.0 ± 1.0 %	0.85	13.5 ± 2.0 %	0.94	12.0 ± 2.0 %	0.94	9.5 ± 2.0 %	0.93
Crude steel							9.5 ± 1.5 %	0.80
Primary aluminium electrolysis	3.5 ± 0.5 %	0.93			3.5 ± 1.0 %		3.5 ± 1.0 %	

- For final and primary energy all learning rates are positive (including standard deviation)
- For paper and cement, learning rates for electricity are negative
- Relatively high goodness of fit (coefficient of performance $R^2 > 0.79$)
- Highest goodness of fit for thermal energy use (and electricity for primary aluminium)

Comparison of learning rates

Some indication: Increasing LR with increasing system boundary

Conclusions

Conclusions

Main findings

- Learning curve approach applicable to describe the development of SEC of industrial processes over time
- Indication that learning rates are higher when system boundaries are broader -> policy instruments should be designed with a broad scope in order to allow process substitution
- Policy recommendation misleading? The approach suggests that ...
 - ... as long as (cumulative) production increases there will be energy efficiency improvement
 - ... (cumulative) production is the only determinant of energy efficiency

Challenges

- The time period considered affects the results (and often data is not available back to the process introduction) -> select time series as long as possible
- Using production output in Germany neglects learning in other countries

Further research

- More analyses of additional products and countries are required in order to arrive at robust conclusions (So far only one study using a similar approach (Ramirez and Worrell 2006))
- Include additional determinants (see two-factor learning curve)
- Use approach to simulate technological change in long-term models

Contact

Tobias Fleiter Fraunhofer Institute for Systems and Innovation Research Breslauer Str. 48 76139 Karlsruhe, Germany <u>Tobias.Fleiter@isi.fhg.de</u> +49 721 6809-208

Thank you for your attention!

