John Cosgrove

A methodology for verified energy savings in manufacturing facilities through changes in operational behaviour.

John Cosgrove, Frank Doyle, Mike O'Neill, John Littlewood & Paul Wilgeroth.

Research funded by Enterprise Ireland under the Technology Centre Programme .

Background

John Cosgrove

Technical Director – ACORN Research Centre. Limerick Institute of Technology, Ireland.

ACORN Research Centre

Focussed on the development of Intelligent Systems and Smart Sustainable Factories under Industry 4.0.

Co-ordinator – TEMPO - Total Energy Management for Production Operations.

Collaboration of Multi-National and SME Manufacturing sites with three Research Centres.

Demonstrated a methodology and set of tools for energy management based on;

- Principles of LEAN Manufacturing
- Product Centred View / Value Stream Mapping

TEN

ECEEE 2016

A methodology for verified energy savings in manufacturing facilities through changes in operational behaviour.

John Cosgrove, Frank Doyle, Mike O'Neill, John Littlewood & Paul Wilgeroth.

Key Points:

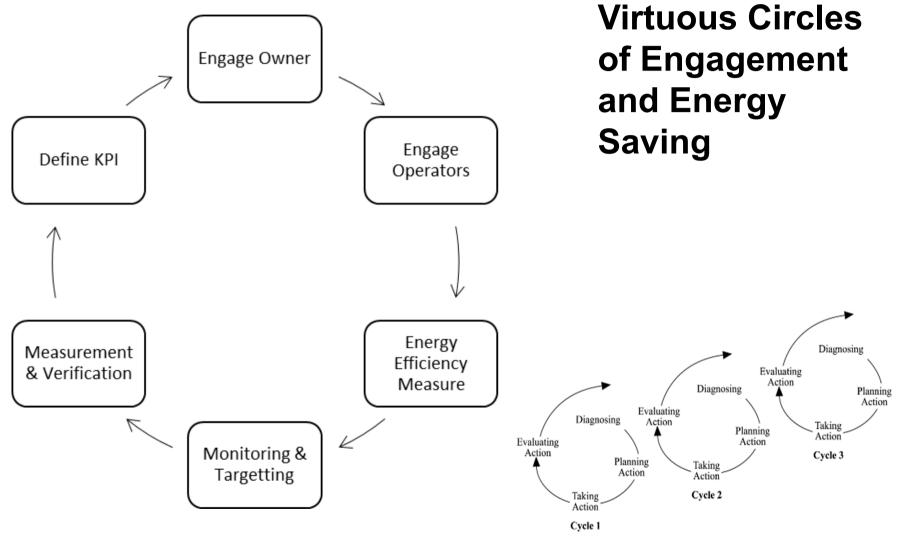
- Energy management in small to medium enterprises (SMEs) remains undeveloped due to competing priorities and a lack of specialist knowledge.
- The set-back of machines through the E-Stop mode effectively reduced the idle energy consumption of 25 machines by 60%.
- An Energy KPI was developed to provide continuous monitoring of progress.
- A Behavioural change model was adopted for energy management in an Irish Manufacturing SME
- Resulting in a 12% reduction in annual energy consumption in production through change in practice.

[I2E2, 2013; SurfEnergy, 2014; Deshpande, 2012; UDIAC, 2013; NRCAN, 2015]

These initiatives and others, demonstrate the savings that can be achieved through the optimisation of the technical services in Industry (Air, Heat, Water) but they also highlight the significance of also addressing production equipment, machines and processes.

Harrington et al, (2014) showed that correctly attributing the direct and indirect energy consumption in six large manufacturing facilities gave a split of 57% **Direct Energy** consumption and 43% **Indirect Energy** consumption. 26% or nearly half of the direct energy was identified as not adding value (Waste).

Jollands et al, (2009); Granade, (2009) shows potential to reduce energy consumption in energy intensive industry by an average of 20%. The same research indicates that energy management and behavioral changes can achieve up to half of this remaining energy efficiency potential.


Barriers

Study	Identified Barriers		
O'Malley et al, 2003	Access to capital, hidden costs, imperfect		
	information and values & organisational		
	culture		
Sorrell et al, 2011	'Hidden costs' are real, significant and form		
	the primary explanation for the 'efficiency		
	gap'.		
	Senior management unaware of the		
	opportunities available.		
Wijnants & Wellens, 2013	EE Measures known but not implemented.		
Lunt et al, 2014	lack of accountability, no clear ownership and		
	no sense of urgency		
USDoE, 2015	Failure to capture the value of energy savings,		
	lack of knowledge of incentives and risks, lack		
	of disaggregated energy consumption data,		
	and lack of in-house technical expertise.		
Fawkes et al, 2016	Risk, Imperfect Information, Hidden costs,		
	Access to Capital, Split-incentives and		
	Bounded Rationality.		

Methodology

Source: Coghlan and Brannick (2001) p. 19

Methodology

Hierarchy of Energy Analysis

	Level	Key Performance Indicators	Energy Tools
Cycle 0	Factory	Total Energy Consumption	Utility Energy Analysis, Deskstudy, Electricity HeatMap, Waste Energy Cost Study
Cycle 1	Function	Significant Energy Users (SEU)	Facilities Analysis, Walkthrough Audit, Aggre- gated time of use Costs.
Cycle 2	Value Stream	Specific Energy Consumption (SEC) Co-efficient of Performance (CoP)	Process Mapping, Specific data logging, Power Profile Analysis.
Cycle 3	WorkCell	Energy Performance Co -Efficient (EnPC)	Monitoring of activity and energy consumption in realtime.

Case Study – Manufacturing SME

The barriers to energy efficiency include the lack of visibility, low awareness, limited know-how and fragmentation of energy consumption. [IEA, 2012]

Challenges for Manufacturing SMEs

- Limited / No Metering in place.
- Contract manufacturing, large variation in products, material types and job-run length
- Lack of expertise

Need to Develop

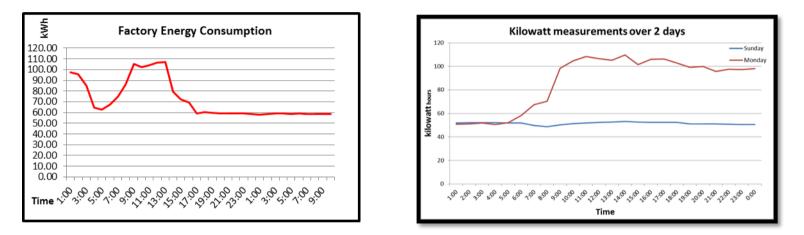
- Key Stakeholder responsible for Energy
- Energy Data from Utility Company and Temporary Metering
- Simple analysis methods and tools (Excel)
- ➢ KPIs for ongoing management attention

Takumi Precision Engineering Ltd

Established: 1998 Factory: 22,000 sq. ft. Employees: 50 Machines; 25 Lathes/Mills Energy: 680,000kWh of electrical energy annually

Takumi means craftsman or artisan in Japanese

Case Study – Manufacturing SME


[Wising et al, 2014] Eight Dimensions to promote energy reduction through management and behavioural change.

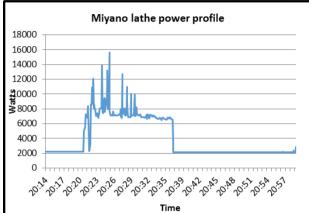
Dimension	Application				
Accountability	Facilities Manager Identified				
Commitment	Energy KPI included in Monthly Management				
	Meetings				
Visibility	EE Signage, Energy Awareness Board – Historical				
	Data, KPI				
Collaboration	Employee briefings, Suggestions Box				
Targeting	Specific Idle Energy KPI developed				
Motivation	Energy Savings used to fund Staff Social Activities				
Learning	Group Training and Knowledge Provision. Energy				
	Doctor.				
Progress	Reported & Displayed				

Case Study – Manufacturing SME

TEMPO

Temporary electricity consumption data was gathered using a range of dataloggers and electricity monitoring meters and systems to show the baseline auxiliary power consumption of the factory.

Auxiliary Energy (Waste) was recorded at 60 kW per hour. The cost of this AuxE represents **28%** of the total annual electricity utility bill in euros.


$$Electricity_AuxE_Factory = \sum_{m=1}^{12} (AuxE_DayUnits x Day_UnitCost) + (AuxE_NightUnits x Night_UnitCost)$$

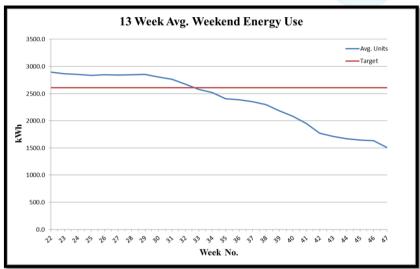
Previously:

Powering off the machines was discouraged due to the complexity of the machines and high precision tolerances.

Frequent switching on/off of some machines could lead to failures in the sensitive electronic equipment.

Machine	Idle Power(W)	E stop Power(W)	Difference(W)	No. of machines	Total Difference(W)	
Doosan CNC 5AX Mill	4954	759	4195	2	8390	E-STOP
Doosan CNC Lathe	4155	1985	2170	2	4340	Set-back
Lamb CNC Mill	2186	310	1876	3	5628	
Spinner CNC Mill	2043	830	1213	1	1213	E-Stop
Arrow 750 CNC Mill	2508	2475	33	3	99	
Arrow 1250 CNC Mill	1442	631	811	1	811	mode
Miyano CNC Lathe	978	488	490	1	490	showed
Agie EDM	2347	768	1579	1	1579	
Agie Spark EDM	1644	820	824	1	824	savings of
Sodick EDM	5565	1255	4310	1	4310	U
Mori Seiki CNC Mill	3457	2979	478	1	478	60% of idle
Deco CNC Lathe	3872	1694	2178	3	6534	energy with
Hawk CNC Lathe	2966	1010	1956	2	3912	
Doosan CNC 5AX small	2519	790	1729	2	3458	no risk to
Doosan CNC 3AX small	1865	1308	557	1	557	o rodu oti o o
Doosan CNC 3AX	762	670	92	1	92	production.
Totals (Watts)	74989	32274		26	42715	

Results



A simplified methodology to achieve verified energy savings through changes in operational behaviour was developed for application in Manufacturing SMEs.

Management & Staff Engagement was key to drive change in behaviour.

The Case Study Company are ontarget for a **20%+** saving in Electricity Consumption (€22,000 p.a.) despite increasing production capacity.

Additional Non-Energy Benefits (NEBs) Identified.

Further Machine Level Monitoring and OEE Metrics are being developed to improve the Energy and Production Tracking.

John Cosgrove Limerick Institute of Technology John.Cosgrove@lit.ie