

Worldwide Resource Efficient Steel Production

Maria Xylia¹, Semida Silveira¹, Jan Duerinck², Frank Meinke-Hubeny²

¹KTH Royal Institute of Technology, Sweden ²VITO – Flemish Institute for Technological Research

Hypothesis and objectives

Assumption: tendency towards Electric Arc Furnace (EAF) technology supported by increased scrap availability

Objective: provide **new insights** for future long term developments in the steel sector using modelling tools

How much scrap will be available for steel production and where? How will scrap availability affect investments?

Emerging technologies: -top gas recycling in blast furnace -JET Blast Oxygen Furnace (BOF) -scrap purification technology

SAAM – Scrap Availability Assessment Model

$$S_{t} = \sum_{i=0}^{n} \eta_{i} \cdot \rho_{i} \cdot (1 - \gamma_{i}) \cdot P_{i},$$

where,

 S_t = scrap made available during the time period t;

n_i = share of steel use that each product group, i, has in the total in-use steel stock;

 $\rho_i = \text{recycling rate;}$ $\gamma_i = \text{fraction of the in-use}$ steel forming obsolete stocks; and $P_i = \text{total steel produced for}$ the time period equal to t minus the average life-time, T, of the product group i

Steel production cost optimisation model

modelling horizon: 2013 to 2100 (milestone: 2050)

Modelling scenarios

Scrap availability

Carbon pricing

baseline

• No carbon price placed (0€)

less low quality scrap (Scenario 1)

 Recycling rate from 60% to 80% in 2050

baseline (Scenario 2)

•Recycling rate from 60% to 85% in 2030

less high quality scrap (Scenario 3)

•25% less high quality scrap by 2030

T15 - EU

• carbon price 15€ after 2020

T15 - WORLD

• carbon price 15€ after 2020

T50 - EU

• carbon price up to 50€ by 2050

T50 - WORLD

• carbon price up to 50€ by 2050

Results – scrap availability and use

high model accuracy for global historical values, uncertainties for regional values

Results – steel production technologies

Bof existing Bof new EAF existing EAF New

Bof existing Bof new EAF existing EAF New

primary & secondary route balance is stable for flat steel, changes for long steel

Results – emerging technology adoption

adoption of new technologies depends on rising CO2 prices and excess capacity

scrap purification becomes more attractive when less high quality scrap is available

Results – trade and policy impacts

increasing scrap use and adoption of new technologies contribute to emission decrease only after 2050 in all scenarios and as production peaks

Conclusions

- -global steel production increases, peaking in 2070
- -primary and secondary route split evolves from 1:2.5 in 2015 to an almost 1:1 split in 2050 – secondary route exceeds primary in 2060
- -secondary route will be favored regardless of policy instruments due to lower costs and higher energy efficiency
- -secondary route very important for developing countries (long steel demand for growing infrastructure needs)
- -introduction of **emerging technologies** may require **more stringent policies** (e.g. increased global carbon price)

