Energy efficient supply chain of an aluminium product in Sweden

What can be done in-house and between the companies?

Maria Johansson, Joakim Haraldsson & Magnus Karlsson

Aim

Identify the actual status in terms of implemented energy efficiency measures in a supply chain of an aluminium product produced in Sweden and to analyse potentials for improvements

• Both in-house at the individual companies and joint work for improved energy efficiency

Supply chain studied

• Delivers a motor component for cars

Methods

- Questionnaire
 - For energy efficiency in-house
 - 75 measures listed
 - Possibility to add more measures
- Focus group
 - For the joint work
 - Discussion between respondents from all 3 companies

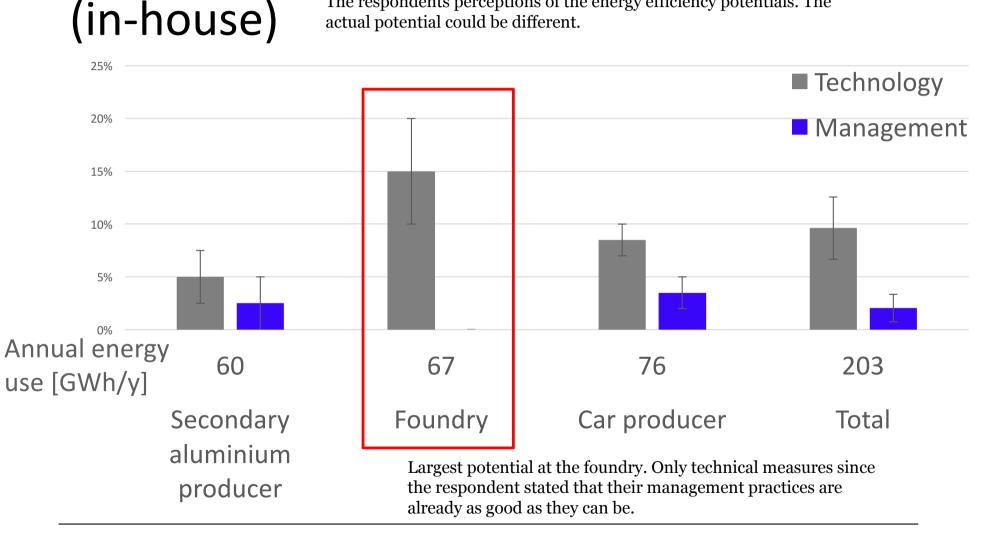
Annual energy use (in-house)

- Secondary aluminium producer: 60 GWh/year
- Foundry: 67 GWh/year
- Car producer: 76 GWh/year
- Total: 203 GWh/year

Applicability of measures (in-house)

- 75 measures in total
 - 9 measures not applicable at any of the companies
 - The rest:

The numbers in the table are the number of times that each alternative has been chosen, and the sum of these is 3 times 66 since it is 3 companies and 66 measures.


				applicable	Unknown to the respon- dent
Total	40	32	66	46	14

A number of measures have been implemented at the companies. However, there are still work to be done, since there are measures that are possible but not implemented yet.

Estimated energy efficiency potentials

The respondents perceptions of the energy efficiency potentials. The actual potential could be different.

Energy efficiency measures (joint work)

- Product design
- Communication and collaboration
- Secondary instead of primary aluminium
- Closed-loop remelting
- Delivery of molten aluminium
- Transportation
 - Optimisation
 - Increased load factor
 - Local sourcing of raw materials
- Mapping the energy use

Energy efficiency potential (joint work)

- The respondents were asked to estimate the energy efficiency potential for the entire supply chain
- Too hard to estimate
 - Need to examine the supply chain
- Largest potential within the companies

Conclusions

- The companies have come some way in their work with energy efficiency in-house
- Still further improvements to be done in-house
- Even larger potential possible with joint work

Thank you for listening! Questions? joakim.haraldson@liu.se www.liu.se

