

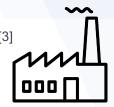
Effects of process decarbonisation on future targets for excess heat delivery from an industrial process plant

Pontus Bokinge¹, Elin Svensson¹ and Simon Harvey²

¹CIT Industriell Energi AB

²Chalmers University of Technology. Department of Space, Earth and Environment

eceee Industrial Efficiency 2020 2020-09-17



Industrial excess heat can contribute to decarbonising the heating sector

Residential heating accounts for more than 20 % of final energy consumption in EU28^[1]

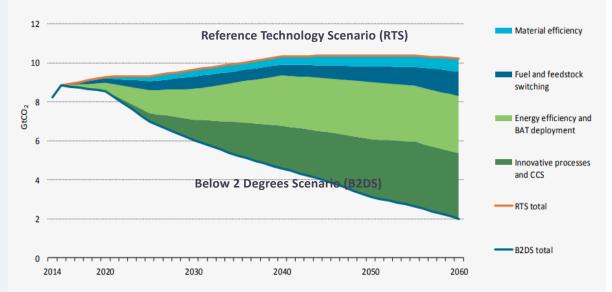
> 70 % from fossil energy sources ^[4] Industrial excess heat potential of 300 TWh/year ^{[2],[3]} -> 15 % of fossil energy demand for residential heating

[1] Mathiesen, B. V., Bertelsen, N., Schneider, N. C. A., García, L. S., Paardekooper, S., Thellufsen, J. Z., & Djørup, S. R. (2019). Towards a decarbonised heating and cooling sector in Europe: Unlocking the potential of energy efficiency and district energy. Aalborg Universitet.

[2] Papapetrou, M., Kosmadakis, G., Cipollina, A., La Commare, U., Micale, G. (2018). Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. *Applied Thermal Engineering*, 138, 207-216.

[3] Bianchi, G., Panayiotou, G.P., Aresti, L., Kalogirou, S.A., Florides, G.A., Tsamos, K., Tassou, S.A., Christodoulides, P. (2019). Estimating the waste heat recovery in the European Union Industry. *Energy, Ecology and Environment*, **4**, 211-221.

[4] Bertelsen, N. , Mathiesen, B. V. (2020). EU-28 Residential Heat Supply and Consumption: Historical Development and Status. *Energies*, **13**, 1894

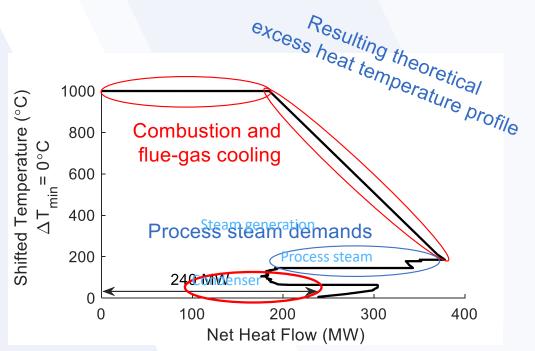

Icons made by Freepik and Srip from www.flaticon.com

Industrial decarbonisation

"[...] decoupling expanding industrial production from CO₂ emissions require significant improvements in **material and energy efficiency**, [...], shifts to **lower-carbon fuels and feedstocks**, and rapid deployment of innovative technologies, including **carbon capture and storage (CCS)**"

IEA, Energy Technology Perspectives, 2017

How will such industrial decarbonisation affect the potential for excess heat deliveries from industry? Direct CO₂ emissions in industry by mitigation strategy in the B2DS compared with the RTS



C\7

Excess heat assessment

Theoretical

- 1. Utilise all non-marketable fuel assumptions
- 2. Minimise heat production in utility boilers and furnaces (fired by purchased fuel)
- 3. Maximise co-generation in back-pressure steam turbines given process steam demands at existing steam levels
- 4. Maximise condensing power production
- 5. Maximise excess heat recovery for new purposes

Svensson, E., Morandin, M., & Harvey, S. (2019b). Characterization and visualization of industrial excess heat for different levels of on-site process heat recovery. International Journal of Energy Research, 43(14), 7988-8003.

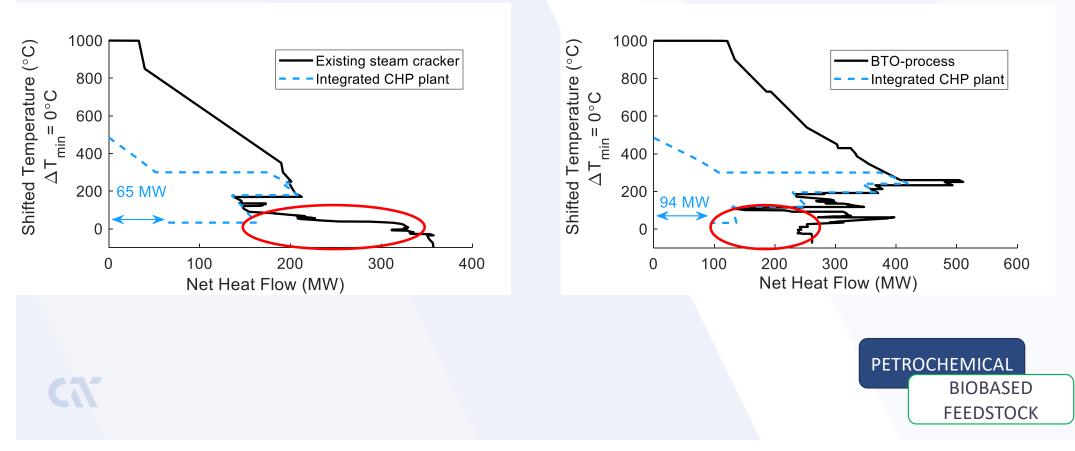
Case Studies

Olefins production: converting a steam cracker plant to production based on biomass

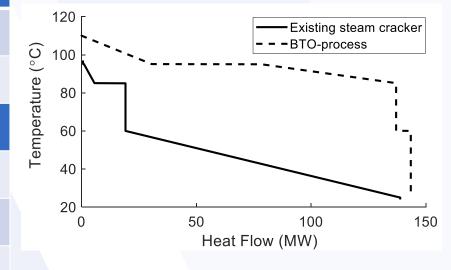
- Production of ethylene and propylene using the methanolto-olefins process (MTO)
- Production of ethylene balance using the ethanol-toethylene process (E2E)
- Methanol and ethanol produced on-site from biomass

PULP AND PAPER

CCS (BECCS)

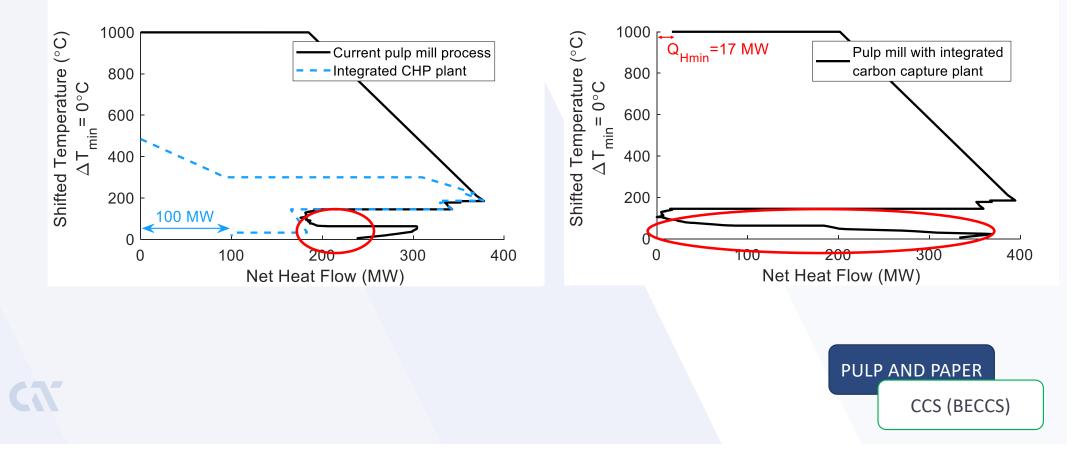

Bio-energy CCS (BECCS) at a chemical pulp mill

 Post-combustion capture of 90 % of the emissions from the mill's recovery boiler and lime kiln

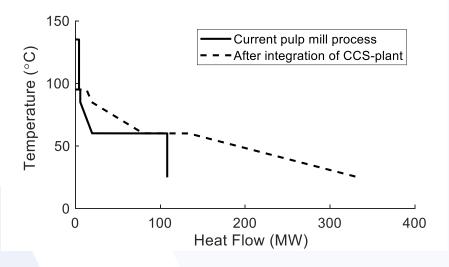

Data from Chalmers Industrial Case Study Portfolio ^[1]

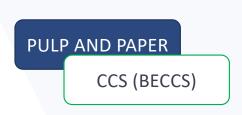
A valuable resource for detailed data on process heat use in existing Swedish industrial plants

[1] Svensson, E., Bokinge, P., Harvey, S., & Normann, F. (2019a). Chalmers Industrial Case Study Portfolio - Contents, Structure and Example Applications, Göteborg, Sweden: Chalmers University of Technology. https://research.chalmers.se/publication/507813



Heat		
Excess heat (≥ 85 °C)	+118 MW	+620 %
Excess heat (≥ 25 °C)	+4 MW	+3 %
Power		
Power generation target	+29 MW	+45 %
Power consumption	+141 MW	+270 %
Power import	+112 MW	+560 %




CN

CN

Heat		
Excess heat (≥ 60 °C)	+26 MW	+24 %
Excess heat (≥ 25 °C)	+224 MW	+207 %
Power		
Power generation target	-100 MW	-100 %
Power consumption	+20 MW	+36 %
(Net) power import	+120 MW	N/A

Summary and Conclusions

- Decarbonisation may significantly change potential excess heat availability, and power generation targets.
- Important to account for future process development when
 estimating industrial excess heat potentials
- Systematic energy targeting basis for further bottom-up assessments of sector-wide potentials for future industrial excess heat

Sneak peak into further work

C77

	Theoretical excess heat			Potential steam turbine power generation			
	Total > 25 °C	> 60 °C	>= 85 °C	Back- pressure	Condensing		
Iron and steel mill							
HYBRIT	8 7	Ŷ					
HYBRIT with off-gas heat recovery	ส	Ŷ	•	•	•		
Steam cracker plant							
BTO process	Ð	Ŷ	Ŷ	Ŷ			
MTO/ETE process	2	Ŷ	r				
Oil refinery							
Full-scale carbon capture	₽	P	Ð	Ð	•		
Low-temp electro- HPU & carbon capture	ส	۴	Ð	2 1	প্র		
High-temp electro- HPU & carbon capture	\$	۴	÷	Ð	÷		
Pulp mill							
Lignin extraction	2	Ð	-∋	-€			
Carbon capture	Ŷ	Ŷ	r				