

Heat integration options and seasonal effects on capture process design and operation

Presenter: M.Sc. Maximilian Biermann <u>max.biermann@chalmers.se</u>

Co-authors: M.Sc. Åsa Eliasson

M.Sc. Elin Fahrman M.Sc. Johanna Beiron

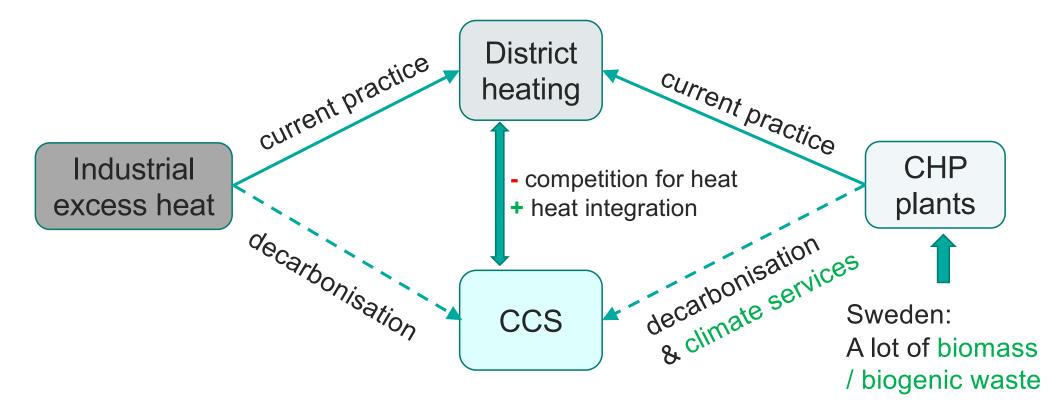
Assoc. Prof. Fredrik Normann

Prof. Filip Johnsson

This work has been carried out at:

The Division of Energy Technology

Department of Space, Earth and Environment


Chalmers University of Technology

Financial support:

Gassnova (CLIMIT Demo)
The Swedish Energy Agency

CCS versus district heating?

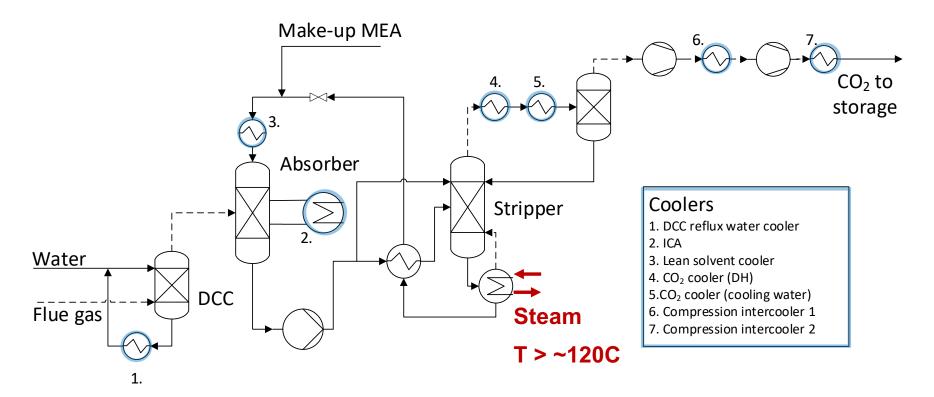
Aim & Scope

Scope: process industry delivering excess heat to a DH network

- process industry that operates throughout the year
- DH heat demand low during summer
- heat not a main product

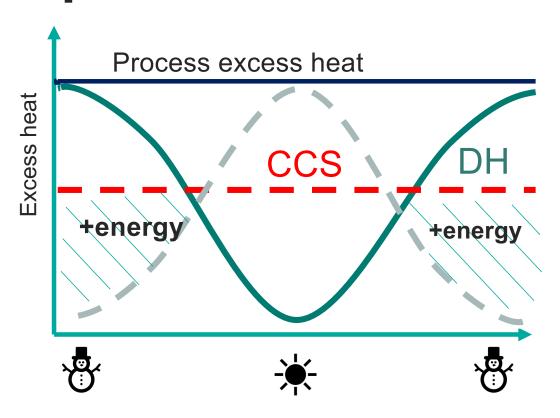
Aim:

- 1. Investigate the heat integration potential: how much heat can be recovered from the CCS process and delivered to the DH system?
- **2.** Evaluate CCS operation modes techno-economically: Is seasonally varying load or constant load preferable?



how much heat from the CCS process can be recovered and delivered to the DH system?

Potential heat sources for DH



seasonally varying load or constant load?

Operation modes and size of CCS

- Current landscape: Excess heat for DH
- M1): all excess heat to CCS, no DH
- M2): same sized CCS plant, seasonal varying load, DH upheld
- M3) smaller CCS plant, constant load + extra energy, DH upheld

SETUP/METHOD

Case study setup

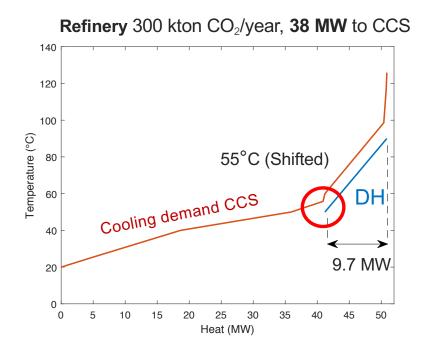
	Refinery flue gases	Steelmill blast furnace gas
annual emissions Mt CO ₂ p.a.	0.45	1.20
CO ₂ concentration [vol.%]	8.9	24.6
DH delivery [GWh/a]	550	850
Heat source	Process heat, heat collection network	Waste-gas fired CHP plant

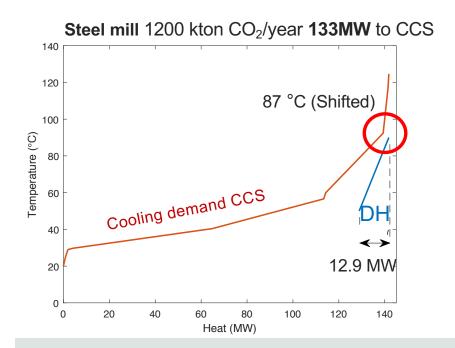
- maximum available heat for CCS = amount currently delivered to DH
- capture rate = 90%; gas flow varied to scale CCS plant
- CO₂ liquefaction to 7 bar transport pressure;
- DH temperatures 50 90 °C

RESULTS


how much heat can be recovered from CCS and delivered to the DH system?

- → Maximize heat supply to CCS;
- → DH delivery not maintained; M1


Minimum temperature difference: 10 °C



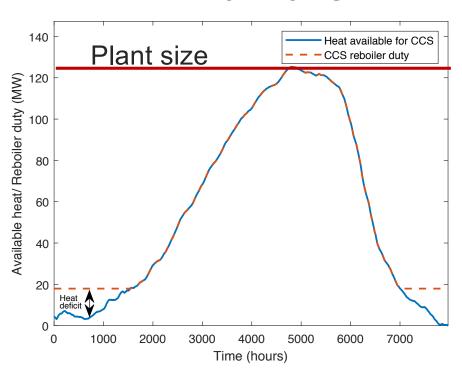
Heat recovery potential from the CCS plant to the district heating network

Recoverable heat / reboiler duty: 25.5 %

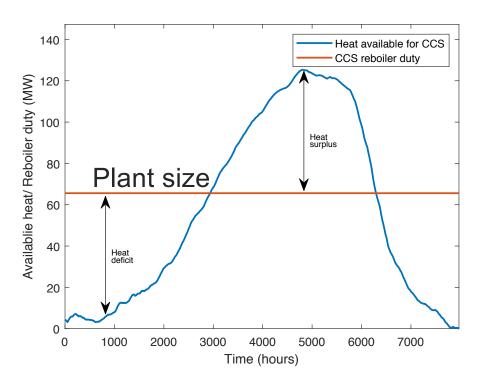
Recoverable heat / reboiler duty: 9.7 %

OPERATION MODES AND SIZE OF CCS (STEEL MILL EXAMPLE)

Is seasonally varying load or constant load preferable?



- → DH delivery maintained
- → Only excess heat not used in DH is used for CCS; M2 vs M3



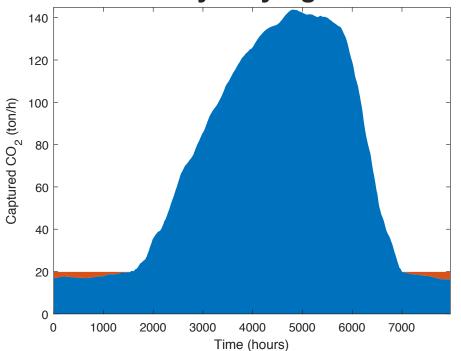
Varying vs constant CCS load

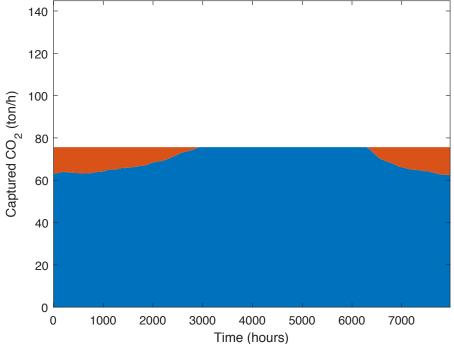
Seasonally varying load

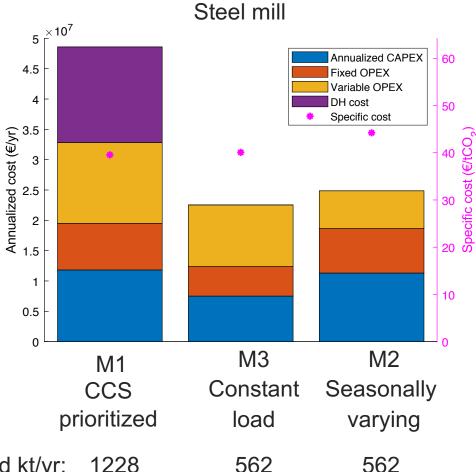
Constant load

Minimum load; no shut down

Blue: CO₂ avoided


Orange: CO₂ from natural gas firing to compensate for heat deficit


Total area: CO₂ captured



99% of captured CO₂ is avoided CO₂

93% of captured CO₂ is avoided CO₂

Economic evaluation

- > High impact on cost from DH revenue loss
- Seasonally varying and constant load operation comparable in cost

CO₂ avoided kt/yr:

562

CONCLUSIONS

%_{CO2}

- recoverable heat from CCS for DH ~ 10 25 % of reboiler duty
 → depends on dTmin, stripper top gas temperature, process configuration
- Seasonal CCS operation with excess heat has comparable cost (€/t CO₂ avoided) to constant load operation
 - → Highly sensitive towards ratios in energy price (electricity/fuel), scale of the process industry, sizing of the CCS plant, shape of the excess heat load curve

- Seasonal operation uses less primary heat, and allows future scale up of capture (excess capacity due to large CCS plant)
- Revenue loss from decreased delivery of district heat is considerable → for process industry to move away from supplying DH needs to be motivated via emission regulation /funding mechanisms

THANK YOU FOR LISTENING!!

Relevant publications from our group:

M.Sc. Thesis report on the topic of this talk:

Eliasson, Fahrman,2020. Utilization of Industrial Excess Heat for CO₂ Capture: Effects on Capture Process Design and District Heating Supply https://hdl.handle.net/20.500.12380/300819

Power plant flexibility and their products/service:

J. Beiron, 2020 - Combined heat and power plant flexibility - Technical and economic potential and system interaction Licentiate thesis https://research.chalmers.se/en/publication/516671

Dynamic performance of CCS plants in process industry:

Martinez Castilla et al., 2019, Int. J. Greenh. Gas Control 82, 192–203. https://doi.org/10.1016/j.ijggc.2019.01.015

Reduction of CCS cost in process industry with partial capture and excess-heat:

Normann et al. 2019. CO2stCap project report, https://research.chalmers.se/en/publication/512527

Biermann 2020 *Partial carbon capture – an opportunity to decarbonize primary steelmaking* Licentiate thesis https://research.chalmers.se/publication/509851

Estimation of available heat	Simulation s in Aspen PLUS	Economic evaluation	Estimation of recoverabl e heat
Published data and literature	Rate-based modeling of CO ₂ absorption in 30wt.% MEA	Cost estimation of installed cost for each piece of equipment	Hot composite curves

METHOD

Technical modelling of CO₂ capture process

- Aspen Plus rate-based CO₂ absorption model using 30 wt.% MEA ¹
 - Absorber CO₂ separation rate 90%
 - Packing height: 20m absorber, 15 m stripper
 - Lean loading 0.30
 - Compressors in liquefaction plant: 20 bar (2 stage)

CAPEX estimations

- Equipment cost from cost functions derived from detailed cost literature
- Liquefaction cost scaled from Deng et al. ²
- Total plant cost estimation with enhanced-detailed factor method ³
- Individual cost factor for each piece of equipment³
- No transport and storage cost considered

OPEX included:

- Electricity price profiles (Sweden)
- District heat price profiles (marginal system cost)
- Cooling water, amine solvent, maintenance, labor, steam supply cost,

¹ Garđarsdóttir et al., Ind. Eng. Chem. Res. 54, 681–690. 2015

² Deng et al., Int. J. Refrig. 103, 301–315, 2019

³ Ali et al., Int. J. Greenh. Gas Control 88, 10–23, 2019

COST SCOPE

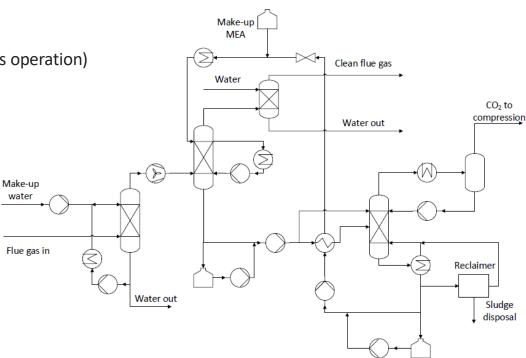
Equipment included:

Plant life time 25 years (2 years construction, and 23 years operation) Cost year 2016

Discount rate 7.5 %

First-of-a-kind or N:th-of-a-kind N:th-of-a-kind

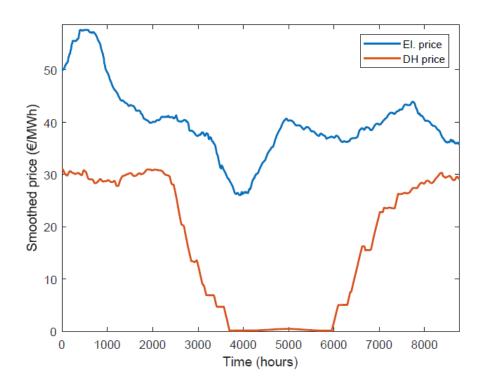
Greenfield or brownfield Brownfield


Location Rotterdam (Location factor 1)

Currency conversion factor (€ to NOK 2016) 9.7 NOK/€

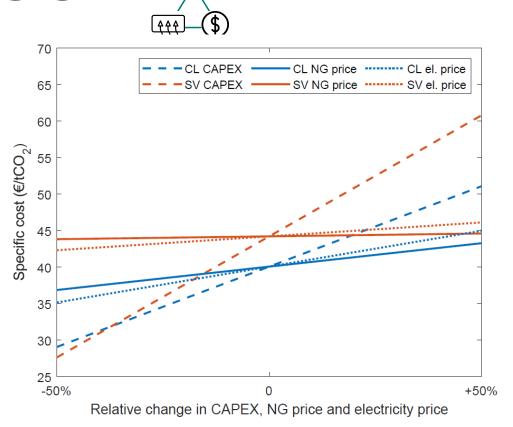
Material flue gas fan CS (fmat 1)

Material pumps SS316 Machine (fmat 1.3)


Material other equipment SS316 Welded (fmat 1.75)

OPEX

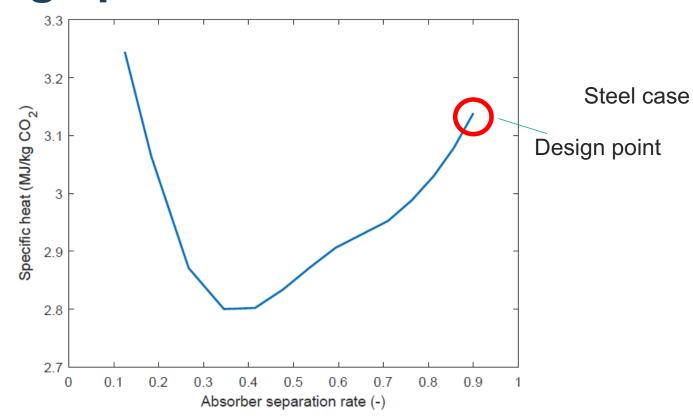
Fixed OPEX	
Maintenance, insurance and labor cost	6% of TIC
Variable OPEX	
Electricity price	Varying
Average electricity price	40 €/MWh
DH price	Varying
Cooling water price	$0.02 \ \text{€/m}^3$
MEA price (including sludge disposal)	$2000 €/m^3$
Steam price, steel mill case	1 €/t
Steam price, refinery case	3 €/t
Natural gas price	16 €/MWh
NaOH price	270 €/t


SENSITIVITY ANALYSIS

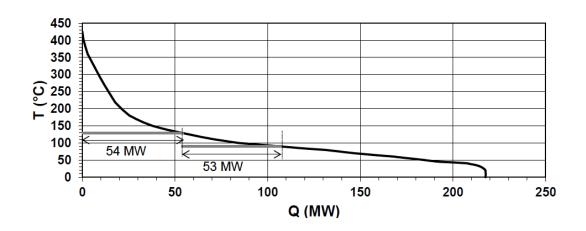
Seasonal varying = red

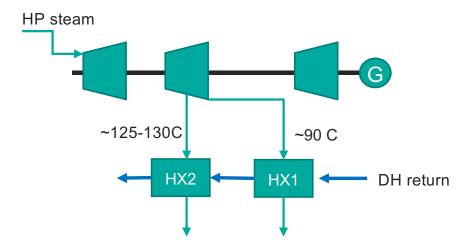
Constant load = blue

Parameter	-50%	0	+50%
Absolute CAPEX (M€), SV	61.1	122.2	183.3
Absolute CAPEX (M€), CL	40.6	81.1	121.7
Average electricity price (€/MWh)	20	40	60
NG price (€/MWh)	8	16	24


2020-09-28

%_{CO2}




Off-design performance

Heat supply – excess heat

Refinery: Heat collection network

Steel mill CHP: turbine bleed steam; power generation loss

CHALMERS