# INDUSTRIAL EXCESS HEAT AND DISTRICT HEATING POTENTIALS AND COSTS FOR THE EU-28 ON THE BASIS OF NETWORK ANALYSIS

Ali Aydemir<sup>1</sup>; David Schilling<sup>1</sup>; Tobias Fleiter<sup>1</sup>; Mostafa Fallahnejad<sup>2</sup>

<sup>1</sup> Fraunhofer Institute for Systems and Innovation Research ISI, <sup>2</sup>TU Wien - Energy Economics Group



### AGENDA

- Background
- Method
- Results
- Discussion and Conclusion

### Background (I/II)

- Heating and cooling (H&C)
  - → Half of Europe's total energy needs
  - → Dependent on fossil fuels (75%)
  - → Decarbonisation: slow, rapid change required
    - → Fragmented
    - → Many decision makers
    - → Local perspective and solutions
- District Heating
  - Countries with higher shares of DH → Higher shares of RE for H&C
  - Potential to increase the speed of transformation
  - Cheap heat as driver → Excess heat

# Background (II/II)

#### Hotmaps toolbox (<a href="https://www.hotmaps.hevs.ch/">https://www.hotmaps.hevs.ch/</a>)

- Supporting public authorities
- Strategic H&C
  - Default data
    - RES potentials
    - H&C demand (Res-/ Non-Residential)
    - ....
  - Calculation modules
    - Scenarions
    - Excess Heat
    - .....



INDICATORS

GRAPHICS

| INFORMATION          | VALUE                |
|----------------------|----------------------|
| HEAT DENSITY TOTAL   |                      |
| Heat demand total    | 14 734.23 GWh/yr     |
| Counted Cells        | 13 328 cells         |
| Heat density min     | 0.03 MWh/(ha*yr)     |
| Heat density max     | 9 491.29 MWh/(ha*yr) |
| Average heat density | 1 105.51 MWh/(ha*yr) |

EXPORT INDICATOR



## Method (I/II)

#### 1. Mapping areas with district heating potential





- 2. Generation of networks to transport excess heat
  - a. Create minimum spanning tree
  - b. Cut edges (maximus distance)
  - c. Calculate flow
  - d. Calculate investments and costs
  - e. Optimize the network

### Method (II/II)





#### 2.d & e

- d: Pumps, Pipes, Heat Exchangers
- e: maximum ratio of cost to heat transport per pipeline  $(CH_{max} \rightarrow threshold \rightarrow ct./kWh)$

vary until all pipelins  $\leq CH_{max}$ )

## Results (1/1)



#### **Values**

- 0.75 ct./kWh  $\rightarrow$  34 TWh  $\rightarrow$  36%
- 1.5 ct./kWh  $\rightarrow$  46 TWh  $\rightarrow$  49%
- 2.0 ct./kWh  $\rightarrow$  51 TWh  $\rightarrow$  54%.
- 5 ct./kWh  $\rightarrow$  53 TWh  $\rightarrow$  57%.
- After that, no increase → heat losses

#### Discussion and Conclusion

- No optimization
- Specific costs: uncertainty
- Comparatively little excess heat: 94 TWh
  - → Persson et al. (2014): 398 TWh
  - → Papapetrou et al. (2018): 304 TWh
- No real distribution of existing district heating networks
- → 50% of the excess heat for transport costs for up to 1.5 ct./kWh

### THANK YOU FOR LISTENING

