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Introduction – Motivation and background
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Ø Industrial sector is responsible for 44 % of 
the German electricity consumption

Ø Industrial grids and applications are 
characterized by

Ø a high load density
Ø short distances between individual 

stations
Ø mainly inductive motor loads
Ø dynamic, short-term loads
Ø small average load

Ø Braking energy is either fed back into the AC 
grid or converted into heat by a chopper 
(braking resistor)
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Fig. 1: Topology of a drive system.
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Introduction – Flywheel energy storage system (FESS)
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Ø FESS can charge using the braking energy

Ø FESS can decrease the peak loads drawn from 
the AC grid

Ø FESS can achieve millions of cycles and do not 
use rare materials, e. g. lithium

Ø FESS are characterized by high discharge rates

Ø FESS need to be designed safely

Ø FESS require peripheral devices (vacuum pump 
and cooling system)

Fig. 2: Topology of a drive system with an integrated flywheel energy storage system.

𝐹𝑙𝑦𝑤ℎ𝑒𝑒𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
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Adaptive control – MIAC vs. MRAC
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Ø Adaption of the desired state of charge (rotational speed) and maximum current led by the inverter
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Figure 3. Topology of the a) model identification adaptive control (MIAC) and the b) model reference adaptive control (MRAC).
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Efficiency evaluation
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Part loads are characterized by 
low efficiency

Fig. 4: Normalized AC power on the grid side of machine A1. Fig. 5: Conversion efficiencies of the active front end of machine A1 for a power 
flow from the AC-grid to the DC link.

Peak loads occur less often

Ø The active front end shall cover the average load and the FESS shall cover the positive and negative peak loads 

𝑃 < 𝑃EFG braking / FESS charging

𝑃 > 𝑃EFG acceleration / FESS discharging𝑃 = 𝑃EFG average load
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Requirements engineering – Methodology
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3 workshops with 3 developers and 3 
users on benefits, drawbacks and plug 
‘n‘ play characteristics led to

Ø 74 requirements for the adaptive 
control algorithm and the system 
integration

Ø 8 dimensions of fulfilment (A-H)

Code Description Quantity

A Maintenance and availability 5

B Design of peripheral devices 7

C Sparse communication between machine and 
FESS

6

D Required control intelligence 13

E Reduced complexity of control software 
integration

4

F Reduced complexity of hardware integration 9

G Economic business case and efficiency 19

H Regulatory constraints 11
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Requirements engineering – Most important findings
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Ø A short installation time and high transferability of the FESS algorithm is a major challenge in the research project.

Ø The use of braking energy is seen as the main advantage.

Ø Stand-by losses are a crucial aspect for the users.

Ø The voltage band used by the FESS, active front end and consumer drives needs to be adjustable.

Ø Electromagnetic compatibility has to be proven.

Ø The machine status has to be known at any time.
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Morphological analysis of adaptive control strategies
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Function Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

State detection DC link voltage Load current Rotational speed 
of the consumer

Induced voltage of 
the motor Temperature

Recuperation DC link voltage Load current Rot. speed of the 
consumer

Induced voltage of 
the motor

Sound pressure 
level/ frequency

Load prediction Day type method Machine learning 
approaches Statistical methods Expert systems 

(rule-based) Fuzzy control

Dynamic load 
sharing Droop control Filter … … …

Load characteristics Descriptive 
statistics

Pattern 
recognition

Machine learning 
models

Clustering 
(unsupervised) …

Control architecture PID control MRAC MIAC Gain scheduling Dead-beat control

Teaching Offline training Online training … …

Energy management 1st order low-pass 
filter

Adaptive droop 
control

Droop control with 
hysteresis … …
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Ø We carried out measurements, workshops and literature research in order to find requirements and solution 
approaches for the adaptive control and integration of flywheel energy storage systems into industrial 
applications.

Ø Two solution paths seem to be promising:

Ø Droop control using a characteristic curve, also known as virtual impedance, that measures the DC voltage 
and decides on the inverter‘s output current

Ø Direct measurement of the total consumer current

Ø Both paths could be combined.

Ø The MIAC approach seems to be suitable as the algorithm shall work on several different machines without 
creating individual, theoretical models. Identification and load prediction are realized using machine learning 
tools.

Ø The next steps are system modelling and testing in a laboratory as well as in real applications.
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