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Outline 
£ Building optimization, Lawrence Berkeley National 

Laboratory’s Distributed Energy Resources Customer 
Adoption Model (DER-CAM) 

£ Web-Optimization, software as service (SaaS) for a University 
building 

£ Example results for the University of California at Davis, Dining 
building 
          Natural gas fired combined heat and power (CHP) units 

with CO2 minimization strategy? 
£ conclusions 

£ additional Information 
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Complex optimization problem 

 
 

The Distributed Energy Resources 
Customer Adoption Model  

(DER-CAM) 
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Building optimization concept for single building 

4 

at the building site 
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DER-CAM 
£  is a deterministic Mixed Integer Linear Program (MILP), 

written in the General Algebraic Modeling System (GAMS®) 

£ minimizes annual energy costs, CO2 emissions, or multiple 
objectives of providing services to a building micro-/smartgrid 

£ produces technology neutral pure optimal results, delivers 
investment decision and operational schedule 

£ has been designed for more than 9 years by Berkeley Lab 
and collaborations in the US, Germany, Spain, Portugal, 
Belgium, Japan, and Australia  

£  first commercialization and real-time optimization steps, e.g. 
Storage & PV Viability Optimization Web-Service (SVOW), 
http://der.lbl.gov/microgrids-lbnl/current-project-storage-
viability-website 
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DR Input 
Parameter 

Energy Sales 

Example Constraints 
energy balance – supply & demand 

financial – payback 
technical – roof area for PV 

 

Hourly Optimal 
Operating 
Schedule 
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High level schematic for DER-CAM 
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Different optimization goals 
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Multi-objective frontier (minimize 
the combination of costs and CO2 

emissions for building) 



Environmental Energy Technologies Division 

Optimization over the web 

 
Web-Optimization (WebOpt) to 
provide a simple optimization 

platform, which also forecasts loads 
for the building 
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Web-Optimization with DER-CAM for the University 
of California, Davis 
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More information at: der.lbl.gov 

from OSIsoft 

Load 

load 
forecasting for 
the next 7 days 
based on 
historic data 
and weather 
forecasts 

7 day ahead 
optimization 
using forecasts 

investment & 
planning based 
on historic data 
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WebOpt interface (investment & planning) 

data link to 
building, Pi to 
Pi interface: 
historic 
building data 
from UC Davis 

optimization 
options 
 



Environmental Energy Technologies Division 11 

WebOpt results (CO2 min., w2=1) 

investment 
details 
 

Operation 
planning  
schedule 
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Case study  

 
University of California at Davis 
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pilot site: 
student cafeteria 

•  one level building (4650m2) 
•  electricity, natural gas & steam 
•  serves 3 meals a day to students 
• ~2 yrs of sub-metered data 
• no detailed data on electric 
 appliances  

University of California, Davis 
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First WebOpt client UC Davis: Dining building 
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Web-Optimization with DER-CAM for UC Davis 
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More information at: der.lbl.gov 

PV: photovoltaic, BS: conventional lead acid battery, FB: Zinc Bromine flow battery, FC: fuel cell with waste 
heat utilization, ICE: internal combustion engine with waste heat utilization, ST: solar thermal conventional 
collectors, HS: Heat storage, BC: Base case, and DN: “Do nothing” case 

Natural gas fired engines with a CO2 
minimization strategy?  

Limited space for PV and solar 
thermal? Combined heat and power 

(CHP) engines are an efficiency 
measure.   
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Diurnal electric pattern for point S2 from 09-Jan-11 
to 16-Jan-11 (cost minimization) 
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CHP runs during the day to minimize the utility demand 
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Conclusions 

 
Conclusions 
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Conclusions 
£ Web-Opt provides access to building optimization by 

o forecasting the sites’ load (our experience shows that 
building operators do not have a good way to collect and 
forecast building loads) 

o providing a simple graphical interface 
o by removing the burden for expensive specialized software  

£ The UC Davis case study shows that 
o efficient CHP plays a role at CO2 minimization strategies 
o CHP can be used to minimize utility costs 
o more detailed data points are needed to model sophisticated 

load shifting in buildings 
o consideration of conventional efficiency measures is 

necessary to complete analysis. 
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End 

 

Thank	  you!	  
	  

Ques%ons	  and	  comments	  are	  very	  
welcome.	  
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Equipment 

Technology	
 Fixed cost 
($)	


Maintenance 
variable cost ($/

kWh)	


Maintenance fixed 
cost ($/kWh)	


Lifetime 
(years)	


Lead-acid battery	
 0	
 200	
 0.0	
 6	

Generic heat storage	
 10 000	
 100	
 0.0	
 17	


Zinc-bromine flow 
battery energy	
 0	
 220	
 0.1	
 10	


Zinc-bromine flow 
battery power	
 0	
 2 125 ($/kW)	
 0.0 ($/kW)	
 10	


Photovoltaics	
 0	
 8 300 ($/kW)	
 0.3 ($/kW)	
 20	

Solar thermal	
 1 000	
 400	
 0.1	
 15	


Parameter	
 Lead-acid battery (%)	
 Zinc-bromine 
flow battery (%)	
 Heat storage (%)	


Charging efficiency	
 87	
 84	
 90	

Discharging 

efficiency	
 87	
 84	
 90	


Decay rate	
 0.4	
 0.0	
 1	

Maximum charging 

rate	
 20	
 N.A.	
 25	


Maximum 
discharging rate	
 40	
 N.A.	
 25	


Minimum state of 
charge	
 30	
 25	
 0	
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Equipment 

Technology	

Rated 
power 
(kW)	


Capital 
cost ($/

kW)	


Maintenance 
variable costs 

($/kWh)	


Electric 
efficiency 

(%)	


Heat-to-
power 
ratio	


Lifetim
e 

(years)	

Small ICE with 

heat 
exchanger	


60	
 3580	
 0.018	
 29	
 1.73	
 20	


Medium ICE 
with heat 

exchanger	

250	
 2180	
 0.013	
 30	
 1.48	
 20	


FC with heat 
exchanger 	
 250	
 2700	
 0.029	
 36	
 1.00	
 10	
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E-19 time of use tariff 

22 



Environmental Energy Technologies Division 23 

E-19 time of use tariff 
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Representative MILP 

Objective function, e.g. min. annual energy 
bill for a test year: 

+energy purchase costs 
+amortized DER technology capital costs 
+annual O&M costs 
+ CO2 costs 
- energy sales 

 

Energy balance 
+energy purchase 
+energy generated onsite 
= onsite demand + energy sales 

Operational constraints 
-generators, chillers, etc. must operate within 
performance limits 

-heat recovered is limited by generated waste heat 
-solar radiation / footprint constraint 

Regulatory constraints 
-minimum efficiency requirement 
-emission limits 
-CO2 tax 
-CA min. eff. requirement for subsidy and (in future) feed-in tariff 
-ZNEB 

Financial  constraints 
-max. allowed payback 
period, e.g. 12 years 

Storage and DR constraints 
-electricity stored is limited by battery size 
-heat storage is limited by reservoir size 
-max. efficiency potential for heating and 
electricity 

Simplified* 
DER-CAM 

model 

*does not show all constraints 
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