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Outline

O Building optimization, Lawrence Berkeley National
Laboratory’ s Distributed Energy Resources Customer
Adoption Model (DER-CAM)

O Web-Optimization, software as service (SaaS) for a University
building

O Example results for the University of California at Davis, Dining
building
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" Natural gas fired combined heat and power (CHP) units
with CO, minimization strategy?

O conclusions

O additional Information
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Complex optimization problem

The Distributed Energy Resources

Customer Adoption Model
(DER-CAM)
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DER-CAM

O is a deterministic Mixed Integer Linear Program (MILP),
written in the General Algebraic Modeling System (GAMS®)

O minimizes annual energy costs, CO, emissions, or multiple
objectives of providing services to a building micro-/smartgrid

O produces technology neutral pure optimal results, delivers
Investment decision and operational schedule

O has been designed for more than 9 years by Berkeley Lab
and collaborations in the US, Germany, Spain, Portugal,
Belgium, Japan, and Australia

O first commercialization and real-time optimization steps, e.g.
Storage & PV Viability Optimization Web-Service (SVOW),
http://der.Ibl.gov/microgrids-lbnl/current-project-storage-
viability-website
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High level schematic for DER-CAM
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Different optimization goals

Multi-objective frontier (minimize
the combination of costs and CO,
emissions for building)

Cost CO,emissons )

min| w1 - + w-> -
( L MaxCost 2

MaxCO,emissons
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Optimization over the web

Web-Optimization (WebOpt) to
provide a simple optimization
platform, which also forecasts loads
for the building
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Web-Optimization with DER-CAM for the UnlverS|ty

of California, Davis

Flow diagram of WebOpt
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WebOpt results (CO, min., w,=1)

! Distributed Energy Resources (DER) Web Optimization Service (WebOpt)

IS[=] B3
File Edit Help
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Size of Photovoltaic {m”2) 19574
Electricity Generated Onsite (kWh/a) | 1,492,742.2
Utility Electricity Consumption (kWh/a) 734504
Utility Natural Gas Consumption (kWh/a) | 14,538,104.5
Total Fuel Consumption (onsite plus fuel for macrogrid electricity, without diesel) (kWh/a) | 14,754,135.0
Efficiency of Entire Energy Utilization (Onsite and Purchase), without NG-only load 1.1| Efficiency of Entire Energy Utilization (Onsite and Purchase), with N
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v
J | o
Please select the month: I‘uy
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Case study

University of California at Davis
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First WebOpt client UC Davis: Dining building

- one level building (4650m2) pilot site:

- electricity, natural gas & steam ~student cafeteria l
* serves 3 meals a day to student§ = .
-~2 yrs of sub-metered data

‘no detailed data on electric
appliances

University of California, Davis
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Web-Optimization with DER-CAM for UC Davis

1000 <4 minCO;, : . — :
= 2\ PVLBS+EBLECHICEL) | ———p Natural gas fired engines with a CO,
950 &)~ sTHHS A minimization strategy?
900 S37T. o Limited space for PV and solar
o~ AR ; thermal? Combined heat and power
&~ -0 ~ minCo,, PV+BS+FB ' p
= 850 Wi=b, ST o (CHP) engines are an efficiency
= wy=1 i R S measure.
g 800 nCO, PVFSTIHS | s
-e—; i o SR ~ 7, - minCost, ICE+BS
*s 750 S;' < - S2 minCost, ST+BS
= T e e E-19. DN
= 700 e e o= .
S /ST+HS>, minCO=~ _ - e
= 650 , B S ssaiy sy S rcle
< / W= 1‘\ S1
600 Good compromise w5, =0 \
between the two
550 objectives Most economical solution
compared to BC
500 ' *

2700 2800 2900 3000 3100 3200 3300 3400 3500
Annual CO, emissions (tCO,)

— — — - flat tariff multiobjective frontier ) ) ) )
—-—— TOU tariff multiobjective frontier ¢ with flat tariff with TOU tariff

PV: photovoltaic, BS: conventional lead acid battery, FB: Zinc Bromine flow battery, FC: fuel cell with waste
heat utilization, ICE: internal combustion engine with waste heat utilization, ST: solar thermal conventional
collectors, HS: Heat storage, BC: Base case, and DN: “Do nothing” case

e More information at: der.Ibl.gov
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Diurnal electric pattern for point S2 from 09-Jan-11g%
to 16-Jan-11 (cost minimization) <
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Conclusions

Conclusions

Science
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Conclusions

O Web-Opt provides access to building optimization by
o forecasting the sites’ load (our experience shows that
building operators do not have a good way to collect and
forecast building loads)

o providing a simple graphical interface
o by removing the burden for expensive specialized software

O The UC Davis case study shows that
o efficient CHP plays a role at CO, minimization strategies

o CHP can be used to minimize utility costs

o more detailed data points are needed to model sophisticated
load shifting in buildings

o consideration of conventional efficiency measures is
necessary to complete analysis.

~
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End

Thank you!

Questions and comments are very
welcome.
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Equipment

Maintenance . . o
Fixed cost . Maintenance fixed Lifetime
Technology variable cost ($/ cost ($/kWh)
kWh
| Lead-acid battery | 0 0.0 6
0.0

Lead-acid batte 200
Generic heat storage 10 000 100 17
Zinc-bromine flow 0 290 0.1 10
battery energ
Zinc-bromine flow
battery power 0 2 125 ($/kW) 0.0 ($/kW) 10
Photovoltaics 0 8 300 ($/kW) 0.3 ($/kW) 20
Solar thermal 1 000 400 0.1 15
. Zinc-bromine
Lead-acid battery (%) flow batterv (% Heat storage (%)
Charging efficienc 87 84 90

Discharging

0.4 0.0 1
Maximu:gtzharging 20 NA. o5
discI:vll'laa)l('lTnumrate +l0 N 42
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Equipment

Rated Capital Maintenance Electric Heat-to- | Lifetim
Technology power cost ($/ variable costs efficiency power e
$/kWh % ratio ears

Small ICE with
heat 3580 0.018 29 1.73
exchanger
Medium ICE
with heat 250 2180 0.013 30 1.48 20
exchanger

FC with heat
250 2700 0.029 36 1.00 10

Years of World-Clas
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E-19 time of use tariff

Energy Prices ($/kWh)
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E-19 time of use tariff

Demand Charges [$/kW)
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Representative MILP

Energy balance S | m p I |f|ed* Operational constraints
+energy purchase -generators, chillers, etc. must operate within

+energy generated onsite D E R'CAM performance limits
= onsite demand + energy sales d I -heat recovered is limited by generated waste heat
mode -solar radiation / footprint constraint

~ /

Objective function, e.g. min. annual energy

bill for a test year:
+energy purchase costs Financial constraints
+amortized DER technology capital costs <4— | -max. allowed payback
+annual O&M costs period, e.g. 12 years
+ CO, costs

/ - energy sales \
(Regulatory constraints A Storage and DR constraints

-minimum efficiency requirement -electricity stored is limited by battery size

-emission limits -heat storage is limited by reservoir size

-CO, tax _ _ _ _ _ -max. efficiency potential for heating and
-CA min. eff. requirement for subsidy and (in future) feed-in tariff electricity

kZNEB J

*does not show all constraints
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