

ECEEE, Panel 1, 6 June 2013 Presqu'île de Giens, France

The role of **technology-forcing standards** and innovation to dramatically accelerate product energy efficiency

Kevin Lane, Fiona Brocklehurst Hans Paul Siderius, Mark Ellis

Overview

- Background (standards)
- What is a Technology-Forcing Standard
- Lessons learned from different sectors
- Risks, mitigation
- Possible ways forward for equipment

Success of Ecodesign/MEPS!

Past MEPS have been effective:

- EU MEPS/ecodesign requirements
- US refrigerators, removed entire range of products from market over a few years.
- Similarly Australia, evaluation proved MEPS a very successful policy measure.

Though how much more stringent could the mandatory MEPS level be made, towards innovative TFS? How desirable? And how?

Existing approaches for appliances/ equipment MEPS

Minimum Energy Performance Standards (MEPS) (EU, USA)

- Based on engineering analysis (expensive to do properly)
- Based on currently known technology (or near term)
- Tend to overestimate costs, underestimate potential
- Externalities and learning not included directly in target setting
- [technology diffusion, rather than significant innovation]

Top Runner (Japan)

- Future targets based on statistical analysis of the current market (the best in each category)
- Allows for market average compliance, difficult to check

MEPS – based on life cycle cost (LCC)

$$LCC = PC + OC + MC$$

LCC – life cycle cost

PC – purchase cost

OC – operating cost

MC – maintenance cost

LCC – life cycle cost

MLCC – minimum life cycle cost

ELCC – equivalent life cycle cost

BAT – best available technology

What is a Technology-forcing Standard?

General: A legal requirement to bring forward technology that is currently not available or commercialised or considered too costly.

Classic example:

- 1970 Clean Air act (Car pipe emissions)
 - Required a 90% reduction in emissions in 5 years
 - No 'known' technology available (a priori)
 - Led to developed catalytic converters
 - Successfully introduced (with a few hiccups)

Example and comparison

Variable affecting TFS	Clean Air act 1970 (catalytic)	DoT 1969 airbag decision
Technology cost	\$200-250	\$235 (GM)
Asymmetric information	EPA erases advantage	GM reveals information
Regulatory mandate	Legislative (congress)	Regulatory (agency)
Raise rivals' costs		Yes
Non-compliance	EPA 'winks' at Chrysler	?
Liability concerns	recalls	Yes

TFS strongly regulatory approach apparently more effective than the DoT approach via NHTSA

Clean Air Act (1970) requires emission reduction: new **catalytic converter** Dept of Transport **airbag** decision – drawn out, ineffective

Source: Gerard and Lave (2007)

Other policies examined

- USA SOx emissions reduction via cap and trade
- Renewable energy (portfolio) standards
- Montreal Protocol, banning ozone depleting substances
- UK Climate Change Agreements
- Zero emission vehicles in California
- English Building regulations (zero Carbon by 2016)

TFS – a definition

Requirements on new appliances/products/service:

- Where efficiency performance levels are currently:
 - Not on the market at present,
 - Considered too costly at present,
- Which require:
 - Innovation,
 - o broad diffusion,
- Which importantly, are delivered via regulation.

Lessons learned: Possible benefits of TFS

- Sends clear long term signal to the market
- Industry can deliver closer to optimal solutions of high efficiency technology
- Requires (essentially mandates) industry investment in energy efficiency - innovation requirement
- Result in better technology sooner, at lower cost

Lessons learned: how to apply

- the importance of flexibility:
 - Specify goal not solution
 - Include frequent reviews
- Needs strong regulation
 - dependent on public/other support
- the importance of industry cooperation:
 - Industry knows technology best
 - Industry sign up makes strong action easier

Risks and mitigation for TFS (1/2)

- 1. Targets too stringent, too costly, delay risk:
- Mitigate by:
 - Regular reviews of progress
 - Support TFS with other measures (eg rebates, procurement, tax breaks)
- 2. Information asymmetry:
- What levels? Industry tends to knows more than regulators. Push-back.
- Mitigate by:
 - Developing expertise through contracts, panels
 - Use competition (within region, foreign vs domestic)
 - Information from component suppliers
- 3. Low Industry access to capital for innovation & R&D:
- Mitigate by:
 - o Encouraging and supporting collaboration (to reduce costs)
 - Offering grants and tax breaks in support of R&D
 - Providing policy confidence (no flip-flopping)

Risks and mitigation for TFS (2/2)

- 4. Leakage/reduced competitiveness:
- Mitigate by:
 - Making regulation geographical coverage as wide as possible
 - Reducing cost of innovation by supporting R&D
- 5. No policy mandate for TFS:
- Change in approach may need new legislation to adopt requiring political will and causing delay
- Mitigate by:
 - Developing existing approaches (MEPS, Top Runner) to have more stringent targets
 - Providing evidence to policy makers of where this could work

Some final thoughts on TFS

- In theory, TFS can deliver additional savings and drive innovation
- However, considerable risks and challenges, and could be politically difficult

Are there any practical steps we can take to drive innovation and ratchet standards?

Pragmatic considerations, steps forward for appliances

- 1. Make existing MEPS/Ecodesign methodology more stringent
- 2. Use other supporting policy measures (full market transformation approach, including innovation)
 - Use Government incentives and other mechanisms to generate greater innovation (policy-driven innovation)

1. More stringent/effective MEPS?

- Use Equivalent life cycle cost (beyond LLCC)
 - Larger savings
 - Reduce rebound concern
 - More savings possible at next iteration of MEPS (starting LCC higher)
- Include external costs/benefits in LCC calculation
 - Such as carbon cost, air quality benefits
- Include likely costs reductions due to 'learning' in LCC
 - These are increasingly included in Impact Assessment (not LCC)
- Focus on energy service and select appropriate metrics
 - Reduce/remove technology classification, eg different standards for side-by-side and top-bottom mounted fridge freezers

2. TFS (levels) within market transformation strategy

Set long-term aggressive targets, using a suite of other measures to get help there = policy-driven innovation:

- Use other policy measures to identify next best technology level (eg competitions, prizes)
- Other policy measures to develop market, and bring down costs (eg rebates, gov contracts)

Drive innovation through:

- Procurement, grants
- tax incentives, investment funds
- reduced interest loans, research networks

Summary

- MEPS have been used successfully
- Scope for further ambition
- TFS could deliver significant additional savings
- Some risks and require strong political will
- Pragmatic choice could be:
 - Enhancement (and increased stringency) of existing MEPS/ecodesign regulations
 - Use of TFS as aspirational targets within a coordinated market-transformation strategy
 - Additional policy support for innovation

Thank you!

Contact:

Kevin Lane: KevinLane.Oxford (at) Gmail.com

Fiona Brocklehurst: Fiona (at) BallaratConsulting.co.uk

Hans-Paul Siderius

Mark Ellis

Acknowledgements:

IEA 4E working group (Peter Bennich, John Cockburn, Mike Walker, Robert van

Buskirk, Hans-Paul Siderius, Shane Holt)

Jacky Pett, Lars J Nilsson (panel leaders)

Separate project report:

Lane, K and Brocklehurst, F (2012) Technology-forcing standards. Report for IEA 4E, available at:

www.iea-4e.org

