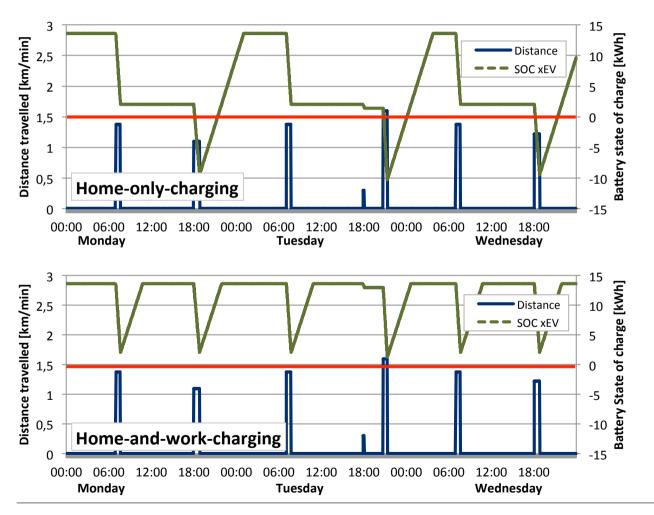

WHAT IS THE FUTURE OF PUBLIC CHARGING **INFRASTRUCTURE FOR ELECTRIC VEHICLES?** – A TECHNO-ECONOMIC ASSESSMENT OF PUBLIC CHARGING POINTS FOR GERMANY Till Gnann, Patrick Plötz and Michael Haag eceee Summer Study, Hyères, France

Charging infrastructure is crucial for adoption of electric vehicles.

- Charging infrastructure is one of the main barriers to EV adoption ((Dütschke et al., 2012), (Roland Berger, 2013), (EC, 2013))
- Infrastructure and vehicle adoption are connected: "simultaneous built-up of charging infrastructure and vehicle penetration" in Germany (NPE 2012)
- Public charging infrastructure rarely used ((EVIX, 2012), (Bruce et al., 2012))
- \rightarrow How much public charging infrastructure do we really need for EV market penetration?
- Lot of work for other alternative fuels, but charging infrastructure for EVs currently not adequately addressed (EC approach rather simple)
- User behaviour rarely addressed explicitly

Approach (1/2) – With the driving profile we simulate a battery profile.

Example of a driving profile*


Departure Date	Departure Time	Arrival Date	Arrival Time	Distance [km]	Purpose
2013-03-18	07:00	2013-03-18	07:40	55	Way to work
2013-03-18	18:00	2013-03-18	18:50	55	Way home
2013-03-19	07:05	2013-03-19	07:45	55	Way to Work
2013-03-19	17:55	2013-03-19	18:05	3	To Sports Club
2013-03-19	20:45	2013-03-19	21:20	56	Way home
2013-03-20	07:00	2013-03-20	07:40	55	Way to Work
2013-03-20	18:05	2013-03-20	18:50	55	Way home

- 3 15) Battery state of charge [kWh] • Distance SOC xEV Home-only-charging 0 -15 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 Monday Tuesday Wednesday
- data set of 6500 driving profiles contain information about driving behaviour of ICEV users
- Simulation of batteries to find
 - technical replaceability by **BFVs**
 - Electric driving share of PHEV/ **REEVs**

^{*}fictive driving profile, only for demonstrational purposes

Approach (2/2) – Battery profile depending on charging infrastructure scenario.

Findings in this example:

- BEV not possible with charging only at home
- But possible with charging at work as well
- \rightarrow Infrastructure may have positive effect

Open question:

How many additional users with more infrastructure?

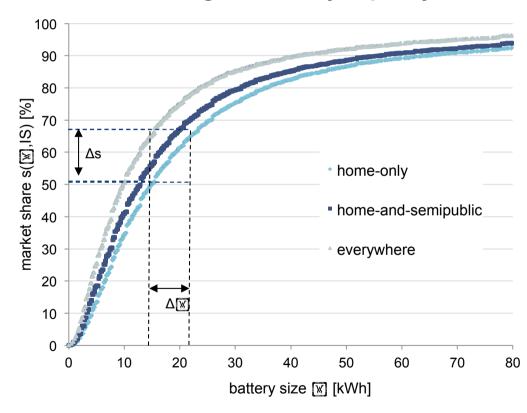
With this battery simulation approach we do a threefold analysis.

1. Technical analysis

- 1. Battery profile simulation
- 2. All ways possible for BEV?
- 3. What electric share for PHEV? (not shown)

2. Macroeconomic analysis

- 1. Every user that is not able to charge at home needs at least one charging point
- 2. Distinction who has to bear the cost: All (=tax) or additional (=supplement) users?


3. Microeconomic analysis

- 1. One charging point per user with distinction of parking
- 2. Every user without garage has to pay for public infrastructure

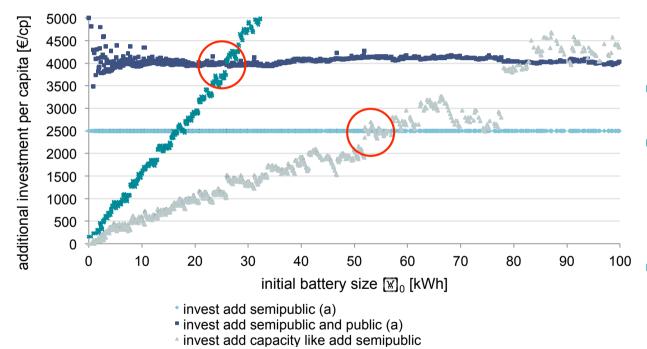
Technical results: Only few additional users through (semi-)public infrastructure.

Share of users that could do all of their driving with a BEV with given battery capacity*

^{50%} of all users could do their daily driving with an average battery (16kWh) and home-only-charging.

- Slight increase of user share possible if users could also charge at semipublic locations (+5%)
- Moderate increase if users could charge publicly as well (+15%).

Slight increase with more infrastructure does not justify built-up technically.


Open questions:

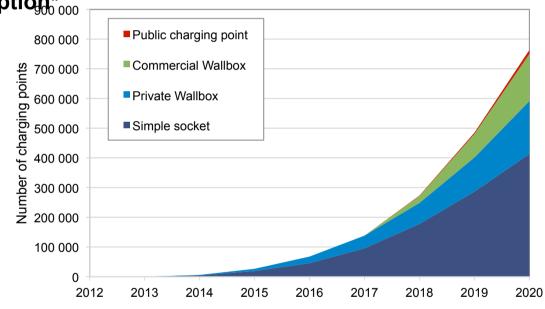
- What is more expensive?
- How much public infrastructure is needed?

Macroeconomic results: Investment in battery size cheaper for mid-size EV.

Additional investment for battery size and capacity in BEVs*

- Investments per capita under the assumption that every additional user needs one charging point (semipublic or public)
- Investments borne by additional users (case a)
- Intersection of additional semipublic charging options compared to increasing battery capacity at around $\mathbb{W}_0=50$ kWh
 - For semipublic and public charging options at ⊠₀=25kWh

Even with high usage assumptions (one charging point per user) no business model, since investment in battery capacity is cheaper.


*Source: Own simulation with data from (MOP, 2010), investments for charging semipublic charging point 2500€ and public charging point 5000€. © Fraunhofer ISI

Microeconomic results: Only few users could afford to pay back public charging

Infrastr

Number of TCO-optimal EV (BEV&PHEV) users (private& commercial) distinct by primary charging option*

Assumption:

User has to pay for his car and primary charging point according to his typical parking.

Findings:

- Only few users of public parking lots could bear additional cost of public charging infrastructure.
- Even without those users. significant market shares are possible.

No need to invest in charging infrastructure for early adopters, as they do not need it from an economic perspective.

*Source: Own simulation with data from (infas and DLR, 2002) and (Fraunhofer ISI, 2013) in home-only-charging Investments for simple sockets 250€, for wallboxes 500€ and for public charging point 3775€. scenario. operating^{r ISI} cost low and given in paper.

Summary and conclusions up to now

		 Majority of potential usors can easily obstrap at home 		
1	Technical perspective	 Majority of potential users can easily charge at home (20 mill. EVs possible in Germany without public infrastructure) BEV+PHEV: Additional infrastructure has small but measurable effect Plug-in-Hybrids offer solution without additional infrastructure 		
2	Economical perspective	 Public charging infrastructure very expensive Yet no business models for charging infrastructure (users may not bear the full cost) Potential users with garage sufficient to reach significant market share 		
What is the future of public charging infrastructure for EVs?		Large-scale built-up of charging infrastructure not necessary (for early adopters) from an economical perspective – some visible charging stations may be helpful psychologically though.		
 Methodological Findings 		 Driving profiles good for user behaviour, but no long-distance trips incl. Primary charging points good to model, but difficulties with other charging options Driving profiles for commercial users still insufficient (in Germany) 		

Questions which arise and further work

Current questions:

- Is charging infrastructure cost for users without garage modelled adequately?
- How can we model/account additional charging infrastructure in (semi-) public places?
- How may we integrate psychological aspects explicitly?
- Is it possible to draw conclusions on fast charging infrastructure?

Next steps:

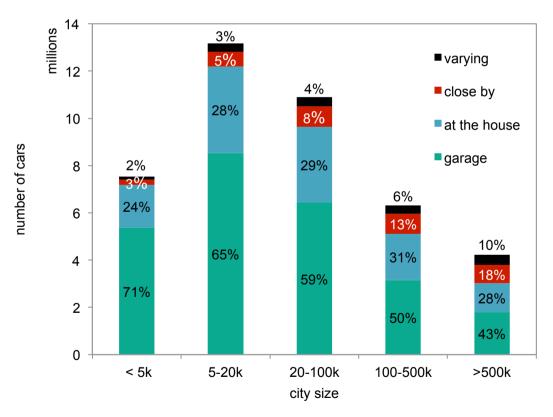
- Ongoing driving profile collection (commercial drivers)
- Better accounting of infrastructure cost
- Integration of charging infrastructure into vehicle buying decision (min cost → max use) and real stock modelling of charging infrastructure
- Model expansion on FCEVs and their "charging" infrastructure

Please read our paper for further information.

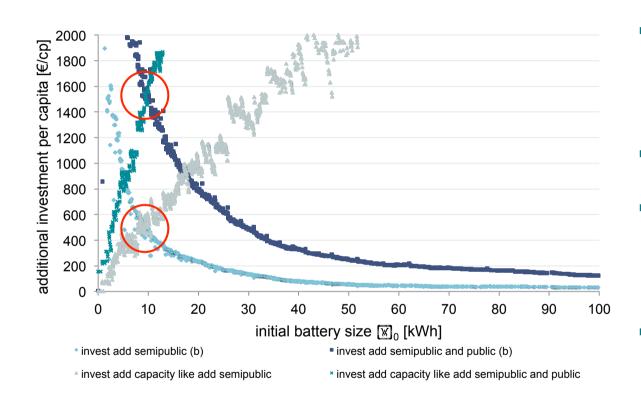
Thank you for your attention.

References:

Dütschke et al., 2012: Roadmap zur Kundenakzeptanz Roland Berger, 2013: E-mobility index for Q1 2013 European Comission (EC) 2013: Clean power for transport – Frequently asked questions Nationale Plattform Elektromobilität (NPE) 2012: Zwischenbericht (Dritter Bericht) EVIX 2012: Electric Vehicle Survey Panel - A National Study of Consumer Attitudes Toward & Usage of EVs Bruce et al. 2012: Lessons and Insights from Experience of Electric Vehicles in the Community MOP, 2010: "Mobilitätspanel Deutschland" 1994-2010. infas and DLR. 2002. Mobilität in Deutschland (MiD) 2002 Fraunofer ISI 2013: REM2030 Fahrprofile Datenbank



Technical results: Lots of users could easily charge at home.


German passenger vehicle stock subdivided into typical parking spots and city sizes.*

Findings:

- 60% of all users let their car in garages overnight
- Another 30% park their cars close by
- Only 10% of so-called lantern parkers
- Initial charging infrastructure can be provided rather simple
- But: Not sure if all garages do have electricity connection.

Macroeconomic results: If all BEV-users paid for infrastructure, it would be less expensive than investing in battery size.

- Investments per capita under the assumption that every additional user needs one charging point (semipublic or public)
- Investments borne by all users (case b)
- Intersection of additional semipublic charging options compared to increasing battery capacity at around M₀=10kWh
- For semipublic and public charging options at ∭₀=10kWh

If investment is borne by all users, it may have positive effects. BUT: Is one point per user sufficient?

*Source: Own simulation with data from (MOP, 2011)

Electric vehicles and their charging options

Characterisation of veh	nicle types	Electric vehicles		
Property	Gasoline vehicle	Plug-in-Hybrid	Battery electric vehicle	
Range	> 700 km	50 + 600 km	< 150 km	
Refueling Frequency	Every 2 weeks	When necessary + every day	Every 3 days or 30% every day	
Refueling Duration	3 minutes	3 minutes + 2 hours	0.5 - 8 hours	

Overview of Different Charging Concepts

Charging Infrastructure	Conductive (cable-charging)	Inductive charging	Battery swap	
PrivateConnection	How many drivers?	Very comfortableRather expensive	 Far too expensive 	
Semi-public	At workEasy to install	Very comfortableRather expensive	 Unlikely 	
Public Charging	Is this group really relevant for Germany?			

Source: Own illustration.

