#### Klemens Leutgöb

e7 Energie Markt Analyse GmbH

Lorenzo Pagliano Paolo Zangheri

Politecnico di Milano, e-ERG





## Cost optimality – Brake or Accelerator on the way to nZEB

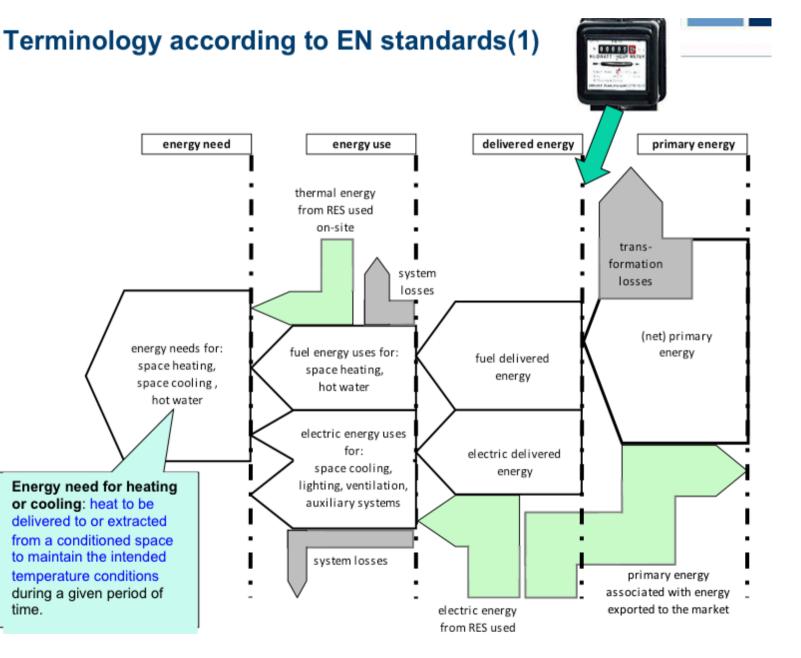
eceee 2013





#### Cost optimality in the EPBD recast

- Art. 5 of the recast Energy Performance of Buildings Directive (EPBD, Directive 2010/31/EU) requires EU Member States to take into account cost optimality when defining energy performance requirements
- COMMISSION DELEGATED REGULATION (EU) No 244/2012 of 16 January 2012 supplementing Directive
  - methodological approach
  - calculation periods
- In many areas national flexibility
  - construction cost, maintenance cost
  - life-times of building elements
  - discount rates
  - energy prices and future trends

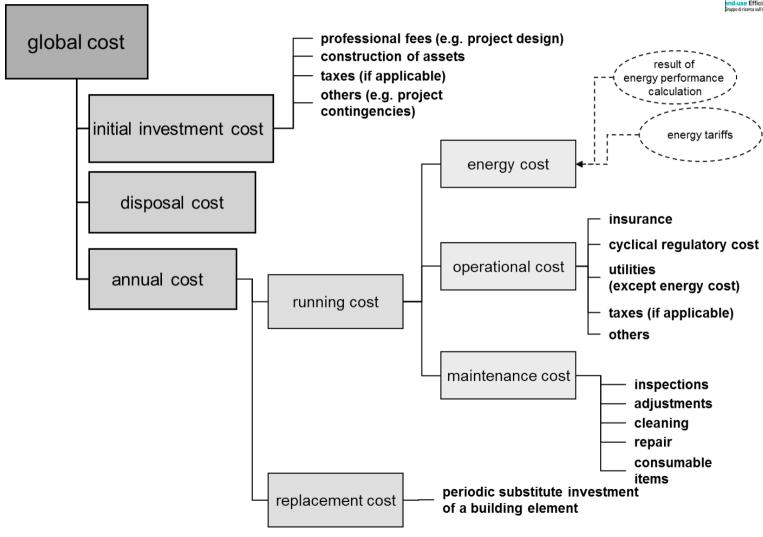



#### **Energy performance calculation**

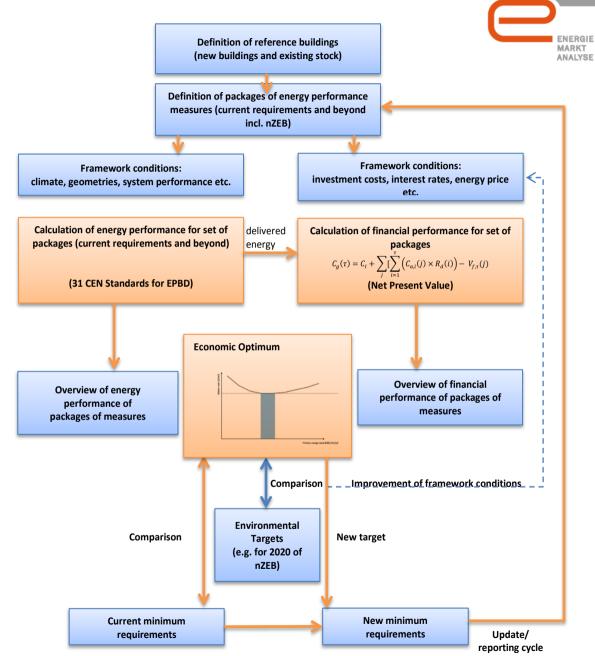
Common terms and definitions are e.g. in UNI EN ISO 13790

A list of all the EN standards is presented in the "Umbrella Document"

Diagram taken from the "cost-optimal methodology", (produced by eERG)




Klemens Leutgöb, e7 Lorenzo Pagliano, Paol




#### Cost categories to be taken into account





## Overview on the process



source: Ecofys for BPIE





# Example No. 1 Office buildings in different climates new construction



#### **Reference Building**

Table 25. Reference office building: configuration for new buildings (for Paris and Budapest)15..

| For new buildings              |                                               | Office building                                                                    |  |  |  |  |
|--------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|
|                                | N° of floor =                                 | 4                                                                                  |  |  |  |  |
|                                | A/V ratio =                                   | 0,47 m <sup>2</sup> /m <sup>3</sup>                                                |  |  |  |  |
|                                | Orientation:                                  | S/N                                                                                |  |  |  |  |
| Building geometry              | Area of N façade =                            | 262 m <sup>2</sup>                                                                 |  |  |  |  |
|                                | Area of N façade =                            | 128 m <sup>2</sup>                                                                 |  |  |  |  |
|                                | Area of N façade =                            | 262 m <sup>2</sup>                                                                 |  |  |  |  |
|                                | Area of N façade =                            | 128 m <sup>2</sup>                                                                 |  |  |  |  |
| Shares of window are<br>=      | a on the building envelope                    | 16%                                                                                |  |  |  |  |
| Floor area m² (as use          | d in building code) =                         | 924 m <sup>2</sup> net floor area                                                  |  |  |  |  |
|                                | Construction                                  | Hollow brick, concrete pir gap, placter                                            |  |  |  |  |
|                                | materials:                                    | Hollow brick, concrete, air gap, plaster                                           |  |  |  |  |
| Description of the<br>building | Typical air infiltration rate <sup>16</sup> : | $Ach = 1 h^{-1}$                                                                   |  |  |  |  |
|                                | Use pattern:                                  | Typical                                                                            |  |  |  |  |
|                                | Age:                                          | Typical for year 2010                                                              |  |  |  |  |
|                                | U value of wall =                             | 0,32 W/m <sup>2</sup> K                                                            |  |  |  |  |
|                                | U value of roof =                             | 0,30 W/m <sup>2</sup> K                                                            |  |  |  |  |
|                                | U value of basement =                         | 0,33 W/m <sup>2</sup> K                                                            |  |  |  |  |
|                                | U value of windows =                          | 2,00 W/m <sup>2</sup> K                                                            |  |  |  |  |
| Description of the             | g value of windows (in                        |                                                                                    |  |  |  |  |
| average building               | absence of solar                              | 0,6                                                                                |  |  |  |  |
| technology                     | shading) =                                    |                                                                                    |  |  |  |  |
|                                | Technical building                            | Standard gas boiler, not insulated distribution, radiators, low efficient chiller, |  |  |  |  |
|                                | systems:                                      | mechanical ventilation                                                             |  |  |  |  |
|                                | Passive systems:                              | No solar shading device <sup>17</sup>                                              |  |  |  |  |
|                                | 1 220.10 0 1000                               |                                                                                    |  |  |  |  |

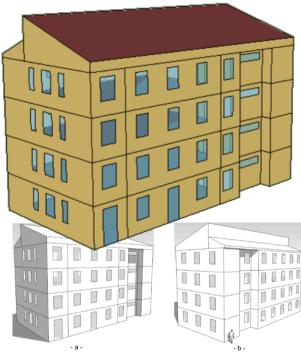



Figure 47. Perspective views of the reference building: a) North and West façades; b) South and East facades.



Figure 48. Floor plan of the reference office building

### Variants of envelope and passive features





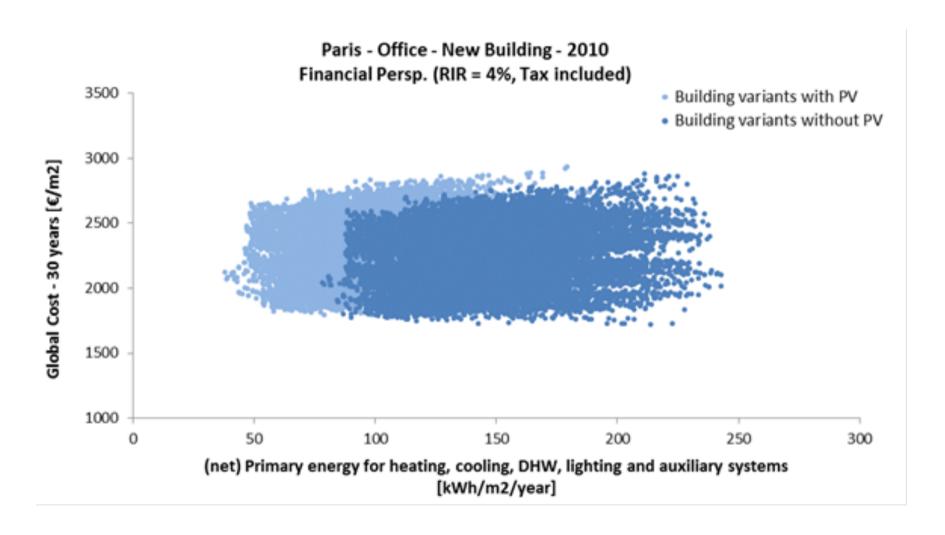
Table 27. Envelope families considered in this analysis: South - West

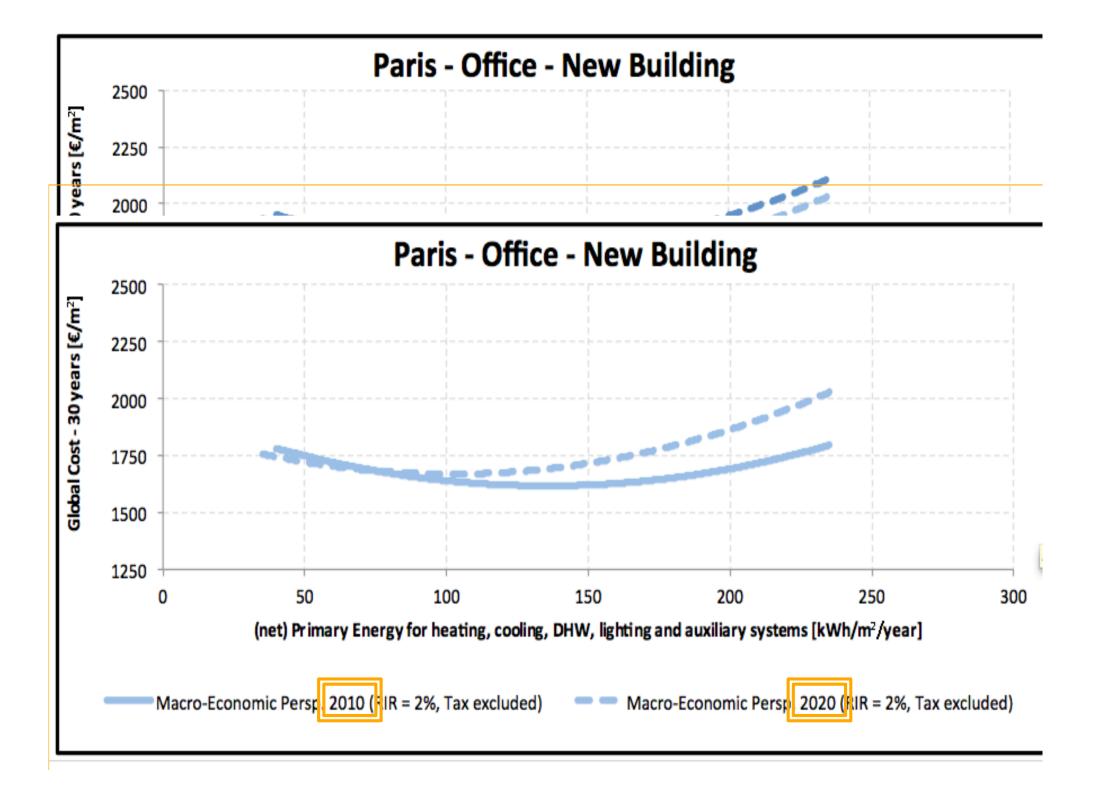
| Package | Measure                                                                     | SOUTH: Catania (IT) |     |                   |      | WEST: Paris (FR)     |      |          |     |                  |      |              |      |
|---------|-----------------------------------------------------------------------------|---------------------|-----|-------------------|------|----------------------|------|----------|-----|------------------|------|--------------|------|
|         | Fa                                                                          | mily                | 1   | Family            | 2 1  | Family               | 3    | Family   | 1   | Family           | 2    | Family       | 3    |
| "e"     | Roof U-value<br>[W/m²K]                                                     | ow: "-"             | 1.5 | medium-low: "o-"  | 0.38 | "+<br>0              | 0.2  |          | 1.5 | "o" :r           | 0.3  | high: "+"    | 0.1  |
|         | Wall U-value<br>[W/m²K]                                                     |                     | 1   |                   | 0.48 | n-high:              | 0.23 |          | 1   |                  | 0.32 |              | 0.14 |
|         | Basement U-<br>value [W/m²K]                                                |                     | 2.1 |                   | 0.49 | medium-high          | 0.26 | "-" :wol | 2.1 | medium:          | 0.32 |              | 0.2  |
| "w"     | Window U-value<br>[W/m²K]                                                   | low: "-"            | 5.2 | -low:             | 3    | medium-high:<br>"o+" | 1.4  |          | 3   | n: "o"           | 2    | +            | 0.8  |
|         | Air infiltration rate: ach 21[h-1]                                          |                     | 0.8 | medium-low:       | 0.5  |                      | 0.3  | "-" :wo  | 0.8 | medium:          | 0.5  | high: "-     | 0.1  |
|         | Total solar<br>transmittance (or<br>g-value) (window<br>+ shading)          |                     | 0.8 | <u>.</u>          | 0.3  |                      | 0.1  |          | 0.8 |                  | 0.6  |              | 0.3  |
| "c"     | Night natural<br>ventilation<br>rate <sup>22</sup> : ach [h <sup>-1</sup> ] | -                   | 0   | medium-high: "o+" | 2    | +                    | 6    |          | 0   | medium-low: "o-" | 0    | n-high: "ο+" | 2    |
|         | Envelope<br>reflectance                                                     |                     | 0.3 |                   | 0.5  | high: "-             | 0.7  | "-" :wol | 0.3 | mediun           | 0.3  | medium-high: | 0.5  |

#### Other core assumptions

Table 32. Main input data of Paris context.

| WEST: Paris (FR)                                                                 | 2010             |                  |                    | 2020                      |                |                    |  |  |
|----------------------------------------------------------------------------------|------------------|------------------|--------------------|---------------------------|----------------|--------------------|--|--|
| Perspective                                                                      | Financial<br>A   | Financial<br>B   | Macro-<br>economic | Financial<br>A            | Financial<br>B | Macro-<br>economic |  |  |
| Real interest rate                                                               | 4%               | 10%              | 2%                 | 4%                        | 10%            | 2%                 |  |  |
| Calculation period                                                               | 30 years         |                  |                    |                           |                |                    |  |  |
| Primary/Delivered conversion factor for electricity                              | 2.58             |                  |                    | 2.06                      |                |                    |  |  |
| Primary/Delivered conversion<br>factor for natural gas                           | 1                |                  |                    |                           |                |                    |  |  |
| Price of electricity (taxes excluded)                                            | 0.115 €/kV       | Vh <sub>el</sub> |                    | 0.144 €/kWh <sub>el</sub> |                |                    |  |  |
| Price of natural gas (taxes excluded)                                            | 0.053 €/kV       | Vh <sub>th</sub> |                    | 0.066 €/kWh <sub>th</sub> |                |                    |  |  |
| Price of electricity sold to the grid                                            | 0.048 €/kV       | Vh <sub>el</sub> |                    | 0.059 €/kWh <sub>el</sub> |                |                    |  |  |
| Real escalation rate of energy<br>prices                                         | 2.5%             |                  |                    |                           |                |                    |  |  |
| Investment cost for new<br>buildings not related to energy<br>use (tax excluded) | 1000 € (2010)/m² |                  |                    | 1000 € (2020) /m²         |                |                    |  |  |
| VAT                                                                              | 15%              |                  |                    |                           |                |                    |  |  |
| Taxes on electrical energy                                                       | 24%              |                  |                    |                           |                |                    |  |  |
| Taxes on natural gas                                                             | 20%              |                  |                    |                           |                |                    |  |  |
| Subsidies and incentives                                                         | excluded         |                  |                    |                           |                |                    |  |  |
| Taxes                                                                            | included         |                  | excluded           | included excluded         |                |                    |  |  |
| Costs of avoided environmental damage (50                                        | excluded         |                  | Included           | excluded Includ           |                |                    |  |  |








#### Results financial perspective









# Example No.2 Single family houses in Austria new construction





#### Reference building

- Simple form of the reference building
  - gross floor area of 221 sqm
  - two storeys
  - surface-volume ratio of 0.68
  - window area: ~ 15%
- construction type: brick structure plus insulation
- two variants of energy supply
  - pellets boiler
  - heat pump

#### overview on variants

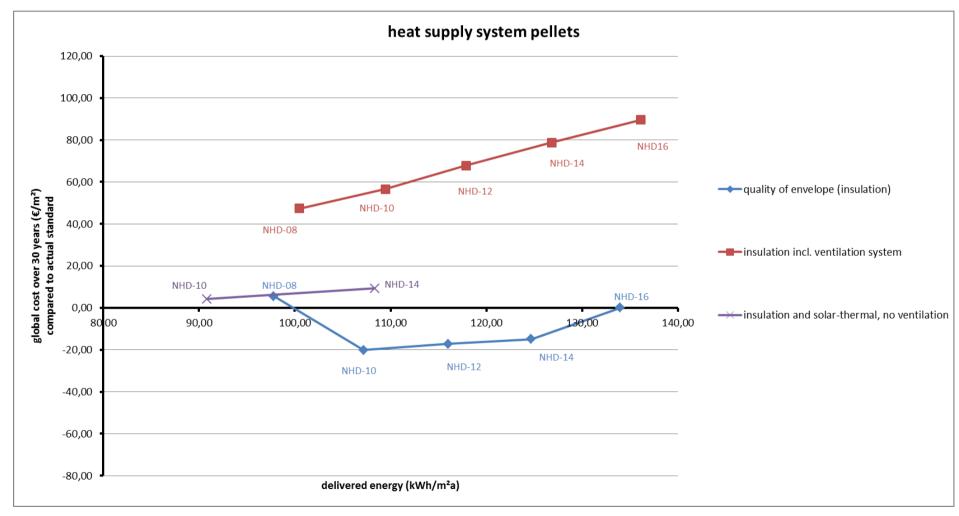
| No. | quality of envelope | ventilation system               | heating supply<br>system | RES-solar     |  |  |
|-----|---------------------|----------------------------------|--------------------------|---------------|--|--|
| 1   | NHD-line 16         | no                               | pellets                  | no            |  |  |
| 2   | NHD-line 14         | no                               | pellets                  | no            |  |  |
| 3   | NHD-line 12         | no                               | pellets                  | no            |  |  |
| 4   | NHD-line 10         | no                               | pellets                  | no            |  |  |
| 5   | NHD-line 8          | no                               | pellets                  | no            |  |  |
| 6   | NHD-line 16         | ventilation                      | pellets                  | no            |  |  |
| 7   | NHD-line 14         | ventilation                      | pellets                  | no            |  |  |
| 8   | NHD-line 12         | ventilation                      | pellets                  | no            |  |  |
| 9   | NHD-line 10         | ventilation                      | pellets                  | no            |  |  |
| 10  | NHD-line 8          | ventilation                      | pellets                  | no            |  |  |
| 11  | NHD-line 16         | no                               | heat pump                | no            |  |  |
| 12  | NHD-line 14         | no                               | heat pump                | no            |  |  |
| 13  | NHD-line 12         | no                               | heat pump                | no            |  |  |
| 14  | NHD-line 10         | no                               | heat pump                | no            |  |  |
| 15  | NHD-line 8          | no                               | heat pump                | no            |  |  |
| 16  | NHD-line 16         | ventilation                      | heat pump                | no            |  |  |
| 17  | NHD-line 14         | ventilation                      | heat pump                | no            |  |  |
| 18  | NHD-line 12         | ventilation                      | heat pump                | no            |  |  |
| 19  | NHD-line 10         | ventilation                      | heat pump                | no            |  |  |
| 20  | NHD-line 8          | ventilation                      | heat pump                | no            |  |  |
| 21  | NHD-line 6,4        | ventilation as<br>heating system | heat pump                | no            |  |  |
| 22  | NHD-line 4,4        | ventilation as<br>heating system | heat pump                | no            |  |  |
| 23  | NHD-line 14         | no                               | pellets                  | solar-thermal |  |  |
| 24  | NHD-line 10         | no                               | pellets                  | solar-thermal |  |  |
| 25  | NHD-line 14         | no                               | heat pump                | PV            |  |  |
| 26  | NHD-line 10         | no                               | heat pump                | PV            |  |  |







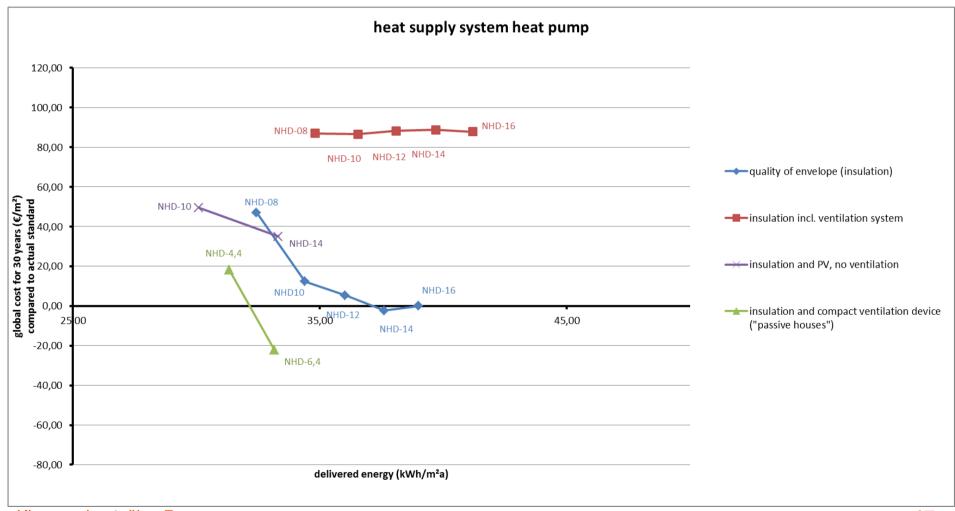
#### Main input paramters and assumptions




- use of market-based construction costs widely discussed with relevant interest groups
- differentiated life-times for building elements
  - insulation: 60 years
  - windows, heating and ventilation distribution systems: 35 years
  - heat supply (boiler, heat pump, central ventilation system, solar systems): 20 years
- energy prices
  - starting price pellets: 0,05 €/kWh
  - starting price electricity heat pump: 0,1655 €/kWh
  - yearly increase of 4% in real terms as compared to ~ 2.8% according to EU ENERGY TRENDS TO 2030 (2009)
- private investor's perspective → inclusion of VAT
- discount rate: 2% in real terms



#### results for heat supply system pellets








#### results for heat supply system heat pump







#### assessment of driving factors

- generally robust results → very little changes in sensitivity analyses
  - lower energy price increase
  - higher discount rate
  - shorter life-times of some building elements
- more observable changes in the results only if concentrated "bias into one direction" for a bundle of input parameters
- more important: construction cost data → cost differences between different qualities





## Elements of a quality check for cost optimality calculations





#### Plausibility of results

- Cost curves for comparable variants are rather flat
  - difference in global cost < 100 €/sqm)</li>
- There exist cost-optimal solutions that are below actual building regulations
- comparative disadvantage of heating dominates climates
  - In heating dominated climates the most energy efficient variants ("nZEB variants") are not cost-optimal yet;
  - In Southern European climates (dominated by cooling) selected "nZEB variants" are already cost-optimal or very close to cost optimality;
- energy carriers with low variable cost move cost optimum to "the right side"
- variants with higher comfort levels have higher global costs
  - example: variants with ventilation systems

## plausibility of driving input parameters and core assumptions





- plausibility of the selected reference building
  - size, shape, share of windows areas etc.
- selection of variants
  - most plausible variants covered?
  - n7FB variants covered?
- quality of cost data
  - market-based, consolidated information source
- concentrated bias into one direction for a bundle of input factors
  - relationship between energy price development and discount rate





#### **Methodological short-comings**

- Completeness of the cost elements considered
  - especially maintenance cost is often forgotten
- Differentiation of life-times of building elements
- Provision for residual value
  - can be checked through sensitivity analysis regarding to life-times

### Conclusion: Brake or Accelerator towards nZEB





- Expectation: cost optimality calculations should show economically viable room for further tightening of the building regulation
  - (very) flat cost curves → no cost optimal point, but rather broad area of cost optimality
- The very energy efficient solutions with considerable RESshare ("nZEB-variants") still have slightly higher global cost
  - probably with exception Southern European climates
  - need for some political courage beyond the simple economical argument







Klemens Leutgöb e7 Energie Markt Analyse GmbH

klemens.leutgöb@e-sieben.at www.e-sieben.at

Lorenzo Pagliono Paolo Zangheri Politecnico di Milano, e-ERG

lorenzo.pagliano@polimi.it paolo.zangheri@polimi.it