DEVELOPMENT OF COST OPTIMAL BUILDING PERFORMANCE REQUIREMENTS FOR HOUSING IN A MEDITERRANEAN CLIMATE

Alan Abela, Mike Hoxley, Paddy McGrath, Steve Goodhew

Overview

- Scope
- Introduction
- Methodology
- Case Study and Analysis
- Conclusions

Scope

minimum requirements for the energy performance of buildings and building elements should be set with a view to achieving the cost-optimal balance between the investments involved and the energy costs saved throughout the lifecycle of the building

(Art. 10, DIRECTIVE 2010/31/EU)

316 km², 35°50′ N, 14°30′ E, pop 419,000

	Maximum U- values (W/m²K)
WALLS	1.57
FLOORS	1.57/1.97
ROOFS	0.59
WINDOWS	5.8

Technical Guidance

Conservation of Fuel, Energy and Natural Resources (minimum requirements on the energy performance of buildings regulations, 2006)

▲ 0.59

BUILDING REGULATION OFFICE SERVICES DIVISION MINISTRY FOR RESOURCES AND RURAL AFFAIRS

ENERGY PERFORMANCE RATING OF DWELLINGS IN MALTA

Primary Energy/m² yr

Abela et al, An investigation into the practical application of energy certificates, SEB12 Sustainability in Energy and Buildings, Stockholm, September 2012.

Methodology

- Establish reference buildings
- Identify energy efficiency measures
- Calculate primary energy demand resulting from application of measures
- Calculate the global cost

Limited data on building stock

■ TERRACED HOUSES ■ MAISONETTES

■ FLATS ■ OTHERS

National Statistics Office, Malta, 2005

Typologies

- Traditional (mainly rural)
- British Colonial Period
- Post war development
 - –Speculative
 - Owner occupied
- 2006 Regulations (EPBD)

Energy Efficiency Measures

Passive Measures	Roof Insulation Wall Insulation	
ivicasures		
	Floor Insulation	
	Different window types	
	Improving air tightness	
	Shading Elements	
Active	Improve Heating System Efficiency	
Measures	Improve Cooling System Efficiency	
	Solar Water Heating	
	Photovoltaic Systems	
	Energy Efficient Lighting	

Calculation of primary energy

 National methodology – EPRDM Based on EN 13790 monthly calculation

ENERGY PERFORMANCE CERTIFICATE OF DWELLINGS MALTA

IES- VE – dynamic simulation software

Global costs

- No local databases available so costs of measures obtained from contracting firms
- Energy costs obtained from the sole supplier
- Discount rates assumed at 3% for government and 6% for private

Case Study and Analysis

Change in heating & cooling load

Global cost 30 yrs & 6% discount rate

Global cost 30 yrs & 6% discount rate

Global cost 30 yrs & 3% discount rate

Conclusions

- Methodology for calculation of primary energy
- Different cost optimal for new build and for existing buildings

Conclusions

- A different approach for mild climatic regions?
- Active measures could be preferable

Conclusions

- Effect of discount rates and predicted energy price increases
- Cost-optimal or NZEB?

