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Abstract
In this study, we develop a novel modelling framework that 
may be useful in forecasting evolution of efficiency distribu-
tions and price-efficiency correlations seen in efficient appli-
ance markets. The framework is founded on three basic as-
sumptions: (1) technological learning is the primary driver of 
price changes for products at fixed efficiency, (2) the dynamics 
of product market distributions can be accurately character-
ized by simple dynamic cumulative distribution functions, 
and (3) price distributions at any particular time can be char-
acterized by a ‘willingness-to-pay” price distribution that is 
correlated with efficiency and which can be interpolated be-
tween a top-of-market value, and a bottom of market value. 
We combined these three fundamental assumptions with the 
mathematics of partial differential equations to derive a set of 
equations that describe the evolution of price and efficiency 
as a function of time and as a function of a transformed mar-
ket share variable. The transformed market share variable 
quantifies the market position of each efficiency performance 
level relative to other efficiency performance levels. The key 
driver for the change in price at different efficiency levels is 
the increase of a “cumulative experience” variable that reflects 
the technological learning that occurs at and above each ef-
ficiency performance level. We demonstrate that the model 
captures the basic empirical observations regarding the evolu-
tion of efficiency distributions and price-efficiency functions 
seen in efficient refrigeration appliance markets in Europe 
between 1995 and 2009.

Introduction
In this study we develop a mathematical model for the dynam-
ics of price-efficiency distributions for appliances. Because 
markets are dynamic, both appliance price, appliance efficien-
cy, and the correlation between price and efficiency changes 
over time. The model that we develop incorporates technologi-
cal learning-by-doing into a mathematical forecast of the time 
evolution of the distribution price as a function of efficiency. A 
key goal of this research is the development of price-efficiency 
forecasting methods that can be useful in energy efficiency 
policy impact analyses. 

Energy efficiency is widely viewed as a key element of an 
energy policy that can help mitigate climate change by de-
creasing the dependence on fossil fuels while simultaneously 
creating economic savings and benefits to consumers and the 
economy1, 2, 3. The vast majority of policy impact studies for ap-
pliance energy efficiency policies in the US have assumed that 
the incremental costs of efficiency increase with inflation or 
decline relatively slowly over time4, 5, 6. While some recent work 
has identified and quantified learning curve trends in the base 
price of appliances that can have a significant impact on the 
long term trajectory of the price of efficient appliances7, 8, ret-
rospective studies have had difficulty detecting the increases in 
average appliance price that appear to be projected by policy 
impact forecasts9, 10, 11. Some recent studies and discussions 
have suggested that the incremental price of efficiency may 
decrease at rates that are substantially faster than the rate of 
decline of average appliance price12. The apparently rapid rate 
of decline in the incremental price of efficiency may be related 
to technological learning. 

This study provides a candidate series of equations that may 
provide a starting point for modeling dynamic price-efficiency 
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curves that change over time due to technological innovation 
and learning. 

In what follows, we first review some basic modeling princi-
pals and assumptions that we use to guide the development of 
our model equations. We then review some of the observed fea-
tures of price, efficiency, and adoption in the European residen-
tial refrigerator market to motivate the basic structure of the 
model equations. We proceed next with the formulation of a 
proposed set of model equations that model the time evolution 
of the price-efficiency distribution consistent with our model 
development strategy. We then illustrate how the solutions to 
the partial differential equations that we develop approximate 
the observed features of the European residential refrigerator 
market. Finally we conclude with a discussion of potentially 
fruitful areas of future research. 

Model Development Strategy
Before we launch in to the details of the model equations, we 
first review a set of strategic modeling choices that we have 
made to guide our model development. We first list these key 
modeling choices, and then briefly describe why we have made 
each of these choices. The key assumptions of our model equa-
tions are as follows:

1.	 Learning-by-doing dominates price dynamics: The cost of 
production for a product, or a piece of a product obeys the 
dynamics of “learning by doing” and follows the dynamics 
a learning curve.

2.	 The model forecasts the dynamics of cumulative market dis-
tributions: We specify the quantity of interest for forecasting 
purposes to be the cumulative price-efficiency distribution 
which is the fraction of product sales at or above a particular 
efficiency and/or at or above a particular price.

3.	 Logistic curves are used to approximate distribution func-
tions: For mathematical simplicity, we will model product 
distributions with a logistic function, which for practical 
purposes is equivalent to a normal distribution, but which 
has a simpler mathematical form. 

4.	 Log-price and log-efficiency are the key quantities of inter-
est: We will assume that the log of appliance price and the 
log of appliance efficiency are quantities that are logistically 
distributed.

We will now review each of these modeling assumption in or-
der. 

Modeling Dynamics with Learning Curves
There is an extremely large literature on learning curves dates 
back to the 1930’s. 

Sometimes the literature makes a distinction between learn-
ing curves and experience curves. The term learning curve is 
used when a change in cost can be directly tied to a produc-
tion learning process. Experience curves are a more general 
empirical phenomenon where it is observed that many price 
trajectories follow a power law even if a direct connection to a 
technological learning process may not be clear. 

For the sake of our empirical model development we treat 
learning and learning rates as a mathematically defined quan-

tity. In our definition, we are concerned with price as a func-
tion of cumulative experience or knowledge. In this context, 
we define the learning rate as the elasticity of price with respect 
to cumulative experience. The concept of elasticity is a very 
general economic concept which describes how one economic 
quantity depends on another economic quantity. Specifically 
the elasticity of a quantity y with respect to another quantity x is 
the “percent change of y with respect to a percent change in x.” 
More rigorously it is the derivative of log y with respect to log x: 

When we are calculating the price elasticity with respect to cu-
mulative experience, the elasticity is the negative of the learning 
coefficient, i.e. e = -b. In general the learning coefficient may be 
a function of several other variables, though in this study we 
confine ourselves to the case of constant learning coefficient.

If incremental acquisition knowledge is proportional to an-
nual production, then we have the following two ordinary dif-
ferential equations that define a learning curve:

	 (1)

	 (2)

Where P is the price, Q is the sales of product per unit time and 
X is the cumulative experience in units of total product sold. 
Note that the simplest solution to equation (1) is the famil-
iar learning curve relationship: (P/P0) = (X/X0)

-b, where b is an 
empirically determined parameter and P0 and X0 represent the 
price and cumulative experience at a reference time7. 

Note that this pair of ordinary differential equations can be 
written is a slightly more compact form if we use the log-trans-
formed variables π = ln(P), and ζ = ln(X):

	 (3)

	 (4)

Expressing Market Distributions as Cumulative Distribution 
Functions
A key reason for modeling price dynamics by modeling the 
cumulative price distribution functions is because cumulative 
distributions are computationally robust given noisy empirical 
data. 

Figure 1 illustrates the evolution of the distribution of refrig-
eration appliance efficiency in the European market from 1991 
to 2009. By showing the distributions in terms of a cumulative 
distribution (i.e. the fraction of products with efficiencies equal 
to or less than the efficiency on the horizontal axis), the motion 
of the market can be seen very clearly. Pre-1997, the cumulative 
distribution of efficiencies was moving rather slowly, and then 
post-1997 the cumulative distribution function has accelerated 
substantially. 
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Note that the horizontal axis in Figure 1 is plotted on a loga-
rithmic scale, meaning that rates of motion indicated in the 
plot are exponential. 

Using Logistic Distribution Functions 
Because in most cases the data will not distinguish clearly be-
tween normally and logistically distributed data, we choose to 
use logistic distribution functions for analytic simplicity. 

Figure 2 illustrates that very close similarity between logistic 
and normal probability distribution functions. The main differ-
ence between the two distributions is the tails of the distribu-
tions. A logistic distribution has an exponential tail, while a 
normal distribution has a tail that falls off as the exponential of 
the square of the distance from the mean. 

The equations that describe the functional form of a cumu-
lative logistic probability distribution are particularly simple. 
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Figure 1. Evolution of the cumulative efficiency distribution of refrigeration products in the European market from 1991 to 2009. The aver-
age efficiency of the distribution increases as time progresses. 
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Figure 2. Comparison of logistic and normal cumulative frequency distributions, demonstrating that the two functions provide similar 
curves (with <0.01 RMS difference).
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The basic formula for a cumulative logistic distribution is:

	 (5)

where x0 is the median of the distribution, and a determines 
the variance of the data about the mean. 

Note that if we define the transformed variable ψ, where 
ψ=ln((1-F)/F), then the equation for the cumulative distribu-
tion simplifies to a simple linear equation:

	 (6)

where we have the inverse variable transformation: F=1/(1+eψ).
Figure 3 illustrates the cumulative distribution curves shown 

in Figure 1 in the transformed variable ψ. In the transformed 
variable, the S-curve shape of the cumulative distribution func-
tions straightens to a set of curves that approximate a series of 
straight lines. 

Forecasting the Log of Price and the Log of Efficiency
Empirical data available on appliance price and energy use ap-
pears to indicate that price and energy use distributions may be 
rather highly skewed, and that they often evolve exponentially 
in time. We therefore develop our model equations in terms of 
log price and log efficiency. 

Models developed for describing the dynamics and distri-
butions of log price and log efficiency will be consistent with 
log-logistic price and efficiency distributions. In addition, ex-
ponential evolution of prices and efficiency will translate into a 
linear evolution of log price and log efficiency over time. 

Figure 4 illustrates one example of the observation of a log-
logistic distribution in appliance energy use measurements. 
This figure provides the cumulative distribution function for 

annual energy use measurements for a field survey of refrigera-
tion energy use in Ghana in 2006.13 A simple two-parameter 
log-logistic function fits the distribution with a root mean 
square (RMS) deviation of approximately one percent. 

Observations of the EU Refrigerator Market
Correlation between price and market adoption: Figure 5 il-
lustrates the distribution of market price as a function of the 
fraction of the market at or above an efficiency level. For the 
European refrigerator data, there appears to be a pre-2003 dis-
tribution, and a post-2003 distribution that are quite different. 

We note that 2003 is the year in which the A+ and A++ lev-
els were created by European Commission Directive 2003/66/
EC.14

Correlation between prices and cumulative shipments: 
Figure 6 illustrates the declining prices of EU refrigerators in 
terms of the cumulative shipments of refrigerators at or above 
each of the different efficiency levels. The figure shows how de-
clines in the cost of efficient refrigerators accelerate once cu-
mulative shipments exceed 1 to 10 million units. Refrigeration 
appliances in the A+ and A++ categories are initially defined 
in 2003 and introduced into the market after the policies on 
standards and labels were implemented. Upon market entry, 
the A+ and A++ levels initially have average prices lower than 
the A and B level appliances had at market introduction. This is 
consistent with the observation of distinct pre-2003 and post-
2003 price distributions in Figure 5. 

Formulation of Price-Efficiency Model
We now integrate our observations of price-efficiency dynam-
ics in the European refrigerator market into a mathematical 
model that can be used to quantitatively describe our observa-
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Figure 3. Cumulative distribution curves illustrated in Figure 1 plotted in the transformed variable ψ = ln((1-F)/F). Note that the coordinate 
transformation converts the “S-curves” of the cumulative distribution functions into curves that approximate straight lines. 
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tions, and potentially generalize them to other appliances and 
markets. 

Modelling Framework
Figure 7 illustrates the mathematical framework that we use for 
modeling price-efficiency dynamics. In this framework there is 
an initial condition that specifies the price-efficiency distribu-
tion in the start year, a bottom of the market (BOM) boundary 
condition that specifies the price of products as they become 
obsolete and leave the market, and a top of the market (TOM) 

boundary condition that specifies the price and efficiency of 
new products entering the market. 

From the initial condition and the boundary conditions, the 
model calculates the dynamics of the central price-efficiency 
distribution over time. 

Specifically, we structure our model with the following in-
puts and assumptions:

A.	 Initial price-efficiency distribution: We solve the price-effi-
ciency dynamics as an initial value problem. At some time, 
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Figure 4. Cumulative distribution function of refrigeration appliance energy use in Ghana. The symbols are the data points, and the black 
curve is a log-logistic distribution fit to the data points.
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Figure 5. The fraction of the market at or above an efficiency level as a function of the average refrigerator price at that efficiency level. The 
two curves are cumulative logistic functions fit to pre-2003 and post-2003 data. 
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there is a known price-efficiency distribution, and over time 
the price-efficiency distribution evolves based on market 
conditions. 

B.	 Top-of-market boundary condition: We define a top-of-
market boundary condition that specifies the price and ef-
ficiency at market introduction as a function of time; Top-
of-market is defined as a particular level in the cumulative 
distribution function (e.g. 1 % market share);

C.	 Bottom-of-market boundary condition: We define a bottom-
of market condition which is willingness to pay (or price) at 
the bottom of the market, but the efficiency is not specified; 
Bottom-of-market is defined as a particular level in the cu-
mulative distribution function (e.g. 99 % market share); 

D.	 Price distribution: The cumulative market distribution for 
price is assumed to be a logistic interpolation of the top-of-
market and bottom-of-market conditions; 
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Figure 6. Price as a function cumulative shipments for different efficiency levels of EU refrigeration appliances.

 
 

Figure 7. Framework for modeling price-efficiency dynamics. The light green shaded area represents the computational domain of the 
mathematical model. Given an initial condition, and boundary conditions at the top of the market and bottom of the market, the model 
equations estimate the dynamics of the price-efficiency distribution in the middle of the market. Because the model is assuming that tech-
nological learning is a key driver for price changes, initial prices and efficiencies need to be specified for new products entering at the top of 
the market. 
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E.	 Price vs. efficiency: The price at a particular efficiency level 
follows the learning curve equations (3) and (4) specified 
above; 

F.	 Top-of-market initial cumulative experience: At the top-of-
market boundary, in addition to price, an initial cumulative 
experience (representing initial knowledge generated by 
research and development prior to market introduction) is 
specified for initiating the integration of equation (4); 

G.	 Determination of efficiency distribution: The market distri-
bution of efficiencies is determined by matching the price as 
a function of efficiency (calculated from the learning curve 
equations) with the price distribution interpolated from the 
top-of-market and bottom-of-market boundary conditions:

H.	 Model inputs: The input data needed for the model includes 
the initial efficiency distribution, the top-of-market price-
efficiency function, and the bottom-of-market price. 

I.	 Fitted model parameters: The fitted model parameters that 
are not directly observable in market data include the learn-
ing rate and potentially the initial cumulative learning at ef-
ficient product market introduction. 

With these model inputs and assumptions, we now formulate 
the details of the model equations, and the computational steps 
necessary to make a price-efficiency forecast. 

The modeling steps include:

1.	 Specifying market data in transformed product market vari-
ables.

2.	 Specifying the initial price-efficiency distribution.

3.	 Specifying TOM price-efficiency and BOM price.

4.	 Calculating the interpolated price-efficiency distribution.

5.	 Determining the initial value and TOM boundary condition 
for the experience variable.

6.	 Solving the dynamic equations for efficiency and price.

In the following subsections, we describe each of these steps in 
detail and illustrate them with data from the European refrig-
eration appliances market. 

Using Transformed Product Market Variables
The first step in modeling market price-efficiency dynamics is 
rescaling to the market variables in which the market distribu-
tions and dynamics take their simplest form. 

Our market data and variables before transformation are 
quantities such a cumulative market share, F, price, P, efficien-
cy, Eff, and cumulative experience, X. The transformations of 
these variables that we use are:

	 (transformed market share)

	 (log price)

	 (log efficiency)

	 (log experience)

With these transformed variables, the equations describing the 
price-efficiency model take on a particularly simple form, as we 
will show in the following sections. 

Initial Condition for the Price-Efficiency Distribution
If the efficiency and price distributions in the market data fit 
logistic distributions as discussed earlier in this paper, then 
specifying the initial condition for the price-efficiency distri-
bution is particularly simple because both log price, π, and log 
efficiency, ϕ, are linear in the transformed market share vari-
able, ψ, as follows: 

	 (7)

	 (8)

where t0 is the initial time, π0 is the median price at the initial 
time, ϕ0 is the median efficiency at the initial time, and α and β 
are the appropriate coefficients for the initial logistic distribu-
tion fits to the price and efficiency distributions. Note that if we 
use these equations to solve price as a function of efficiency, we 
get the following equation:

	 (9)

which implies a familiar power law relationship between price 
and efficiency

	 (10)

For the European refrigeration appliances case, if we chose 
t0 = 1995, then the parameters for the initial condition distri-
butions are as follows: π

0
 = 6.55, α = 0.0911, ϕ

0
 = -0.152, and 

β = 0.144. Hence, the initial price-efficiency power law expo-
nent is approximately 0.63.

Price-Efficiency at TOM Boundary and Price at BOM Boundary
In our modeling framework, the dynamics of the price-efficien-
cy distribution depends on TOM and BOM boundary condi-
tions. The TOM and BOM boundary conditions depend in part 
on the resolution with which one wants to perform the market 
modeling. Theoretically products exist in a market if there is at 
least one product sold within a finite amount of time, but more 
practically, we set a particular market share level: 0.1 %, 1 %, 
2 %, 5 %, etc. that defines when a product type has entered or 
left the market. 

Given the resolution of the data that we have for the Euro-
pean refrigerated appliances market, we set the market entry 
point as 0.25 % market share, and the market exit point as a 
cumulative market share of 99.75 % of products with efficien-
cies equal to or greater than the particular price or efficiency 
level. These values correspond to a transformed market share 
variable of approximately -6 < ψ < 6.

To characterize the behavior observed in the European re-
frigeration appliance market, we specify the following TOM 
and BOM market conditions:

•	 For efficiency at TOM, we estimate an average improvement 
rate of 3 % per year. 

•	 For price at TOM, price we estimate 1,325 Euro at 1995, 
remaining constant until 1998, and then decreasing to 
800 Euro between 2000 and 2004, and remaining constant 
at 800 Euro after 2004. 
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•	 For price at BOM, it remains constant at approximately 
370 Euro for the entire period. 

Given these TOM and BOM boundary condition specifica-
tions, we can calculate the model dynamics. If there are de-
viations between model results and the observed data, we can 
adjust the details of the specifications to improve the statistical 
performance of the model fit with the data. 

Note that we estimated the detailed parameters of the TOM 
and BOM boundary conditions by fitting the model results to 
the available market data, as described in the model results sec-
tion below. 

Interpolating the Price Distribution Function
In our transformed variables the interpolation of the price 
distribution function is particularly simple. The interpolation 
of the price between the TOM and BOM boundary condition 
is linear in ψ, which means that the log price is given by the 
equation:

	 (11)

where ψTOM is the top-of-market value of the transformed mar-
ket share variable (ψ = 6 in our case), ψBOM is the bottom-of-
market value of the transformed market share variable (ψ = -6 
in our case), πTOM(t) is the top-of-market value of the log price 
which can vary with time, and πBOM(t) is the bottom-of-market 
value of the log price that can vary over time but which we set 
to a constant value as described above. 

Initial Values and TOM Boundary Condition for the Experience 
Variable
We note that there is one additional set of boundary conditions 
that is needed for solving equations (12) and (13). Specifically, 
we need to set the initial value and the top-of-market boundary 
condition for the cumulative experience variable: 

We estimate the initial condition of ζ(t0) with available data 
by extrapolating the shipments and the efficiency distribution 
back in time. Specifically we examine shipments at and above 
each efficiency level for the first five years of the available sales 
data. For each of these time series, we also calculate the relative 
(exponential) rate of increase, γ, of shipments in the first five 
years of data (1995–1999 inclusive). Then assuming an expo-
nential back-extrapolation of the data, we estimate the cumu-
lative experience as: X(t0) = Q(t0)/γ . Where for the data we 
have for the European refrigeration appliances case we select 
t0 = 1995.

The results of this calculation are presented in Figure  8, 
which expresses in the cumulative experience in millions of 
units, and then plots the log of cumulative experience as a func-
tion of the transformed market share variable ψ. 

The equations provided in Figure 8 provides an initial TOM 
boundary value for ζ of -3.96 at ψ=6. But we notice that the top 
of market price value changes with time as specified above. In 
specifying the TOM boundary condition for ζ, we assume that 
the ζ  boundary condition changes in a way that is consistent 
with the learning equations (i.e. equation (3) above). In par-
ticular, we specify that the following TOM boundary condition 
holds:

	 (12)

Solving the Equations for Price-Efficiency Dynamics
In this section we describe how the dynamics of the price-ef-
ficiency relationship is calculated in the model using learning 
curve equations. 

First we note that equations (3) and (4) described previously 
can be rewritten in the following form: 

	 (13)
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Figure 8. Log cumulative experience as a function of the transformed market share variable at the initial time, 1995 for European refrigera-
tion appliances. Cumulative experiences is calculated in units of millions of shipments. This means that a value of ζ = 4 corresponds to a 
cumulative experience of e4*1000000 = 54,598,150 cumulative shipments. 
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Model Results
When we numerically solve the model equations and fit them 
to the European refrigerator data, we find that there are five 
parameters that need to be adjusted to provide an optimal fit 
to the data. These include (with the optimum fitted values in 
parentheses):

•	 Technological learning rate (b=1.3).

•	 Top-of-market efficiency improvement rate (3 %/year).

•	 Bottom-of-market price (370 Euros).

•	 Top-of-market price pre-1998 (1,325 Euro).

•	 Top-of-market price post-2004 (800 Euro).

Figures 9 and 10 illustrate the performance of the model in 
describing the observations of efficiency distribution dynamics 
and price-efficiency dynamics for the European refrigeration 
appliances market. Note that the 1995 conditions are specified 
as initial conditions, but the performance of the model in the 
later years illustrates that it may possible to model the vast ma-
jority of market price-efficiency dynamics using a technologi-
cal learning framework. 

Conclusion
In this study, we have developed a novel set of model equa-
tions that can be used to describe the evolution of appliance 
efficiency distributions and price-efficiency correlations over 
time. A key advantage of this model is its empirical foundation 
and parametric simplicity. The model depends only on four key 
parameters and specification of a set of initial conditions. The 
four key parameters are a learning rate (or cumulative experi-
ence price elasticity), a top-of-market price, a bottom-of-mar-
ket price, and a top of market efficiency improvement rate that 
corresponds to the top-of-market price level that is selected. 

We fit our model to data from the European refrigerated 
appliances market and found that the corresponding best fit 
parameter values are: a learning exponent of b=1.3, a top-of-
market efficiency improvement rate of 3 %/year, a top-of-mar-
ket (at 0.25 % market share) price of 800 Euro post-2004 and 
1,325 Euro pre-1998, and a bottom of market price of 370 Euro. 

Future research is likely to explore whether the model equa-
tions presented here can be used to reliably forecast the future 
evolution of efficiency distributions and price-efficiency cor-
relations in product markets. In addition we expect future re-
search to examine the connections between model parameters 
and public policies including technology research investments, 
and the impacts of standards and labeling programs on market 
prices and dynamics. 
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Equation  (13) is the technological learning equation which 
describes the relative rate of price decline at a particular ef-
ficiency which is proportional to the rate at which cumulative 
experience is increasing at that efficiency. Equation (14) is the 
formula that describes the relative rate at which cumulative 
experience grows at a particular efficiency. The first term is 
the fraction of product sales that are at or above a particular 
efficiency level, where 	  is the total product sales at a par-
ticular time, and 		  is the market share factor at 
the particular efficiency and time. 

When we are solving equations (13) and (14), we would pre-
fer to calculate price, efficiency and experience as a function of 
time, t, and the market share variable, ψ. To transform equa-
tion (12) into a form where ψ is the market coordinate in which 
we are solving the equation, we note the following relationship 
between partial derivatives:

	 (15)

and solving for the derivative of efficiency with respect to time 
at constant market share variable, we get:

	 (16)

which provides the equation that gives us the derivative of log-
efficiency with respect to time at constant market share variable 
as the ratio of the difference of log-price derivatives (at constant 
market share and constant efficiency), and the derivative of the 
log-price with respect to log-efficiency. To solve equation (16), 
we calculate δπ(ψ, t)/δt by taking the partial derivative of equa-
tion (11) with respect to time. We calculate δπ(ϕ, t)/δt by using 
equation (13), and we calculate δπ(ϕ, t)/δϕ by taking a numeri-
cal derivative of log price with respect to log efficiency at the 
current time step. This then allows us to use equation (16) to 
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market share variable and time.

Similarly, we wish to calculate the cumulative experience 
variable, ζ , as a function of the market share variable, y, and 
time, t. We therefore write an equation similar to equation (15) 
for ζ:
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To solve equation (17), we calculate δζ(ϕ, t)/δt by using equa-
tion (14), and we calculate δζ(ϕ, t)/δϕ by taking a numerical 
derivative at the current time step, and we use the solution of 
equation (16) to provide an estimate of δϕ(ψ, t)/δt.
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Figure 9. Comparison of model results and data for the efficiency vs. market share relationship. Note that the relationship in 1995 is set 
as an initial value of the market dynamics in the model equations, so the model and the data fit very closely. Also note that there are three 
model parameters: three boundary condition parameters, and a technological learning rate that were adjusted to fit the model to the data. 

Figure 10. Comparison of model results and data for the price vs. efficiency relationship. Note that the relationship in 1995 is set as an ini-
tial value of the market dynamics in the model equations, so the model and the data fit very closely in 1995. Also note that there are three 
model parameters: three boundary condition parameters, and a technological learning rate that were adjusted to fit the model to the data.


