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Abstract
Implementation of smart metering in Europe creates new 
opportunities for studying electricity consumption patterns. 
Measurement of end-uses on appliance level remains however 
to be very time consuming and expensive, so the possibility to 
model segmented end-use demand based on metering of total 
electricity consumption is essential. 

The paper presents results from a Norwegian Research project 
“Electricity Demand Knowledge – ElDeK” (2009–2012). A total 
of 75 Norwegian households from four electricity Distribution 
System Operators (DSOs) participated in the study. The project 
collected hourly time series of total electricity consumption 
from the households, and additional high-resolution (one 
minute) metered data of more than 500 different appliance-
specific loads as water heaters, washing machines, television 
sets etc. 

The collected data were validated and analysed by use of 
a software tool called Useload. Based on metered data of the 
total electricity consumption for the household, the project 
has developed a statistical method for segmenting the hourly 
metered consumption data into weather dependent (for exam-
ple space heating) and weather independent loads. Addition-
ally the weather-independent load has been further segmented 
into demands from appliances as lighting, refrigeration, water 
heating etc. Demand patterns of several households have been 
analysed, resulting in typical group- and household-specific 
demand profiles.

The new approach provides cost efficient and rapid statis-
tical methods for development of detailed load profiles based 
essentially on metered data with resolution one hour or higher, 
collected by smart meters. It allows identifying a potential for 
goal-oriented energy efficiency actions and later verifying im-
pacts of these. Division of the load between weather-dependent 
and independent segments identifies potential flexibility in 
consumption (Demand Response) and creates basis for load 
forecasts. 

Introduction
Residential customers are major users of electric energy in 
Norway, and in 2010 the residential sector accounted for 40 % 
of Norway’s total electricity consumption [11]. Space heating 
accounts for approximately 60 % of the residential electricity 
consumption, and water heating accounts for around 15 % [6]. 
Since space heating and water heating can be provided by other 
energy carriers than electricity, electric heating is considered 
as a target for demand response actions and the facilitation of 
time-of-use (TOU) pricing [9]. A cost effective and reliable 
method for estimating the share of heat demand is necessary to 
account for how the use of TOU and demand response target-
ing electrical heating could contribute to balancing intermit-
tent electricity production (as wind power and photo voltaic) 
in the electricity market.

Segmentation of residential electricity demand can be ex-
plained as methods to detect the proportion of the electricity 
demand that is used for specified purposes as appliances, re-
frigeration, heating and air-conditioning. Traditionally end use 
segmentation is performed by direct metering of each end-use, 
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[6]. The share of space heating can also be found by subtraction 
of appliance specific metered load from the total metered load 
of the building – i.e. finding the residual.

The implementation of smart metering in Europe creates 
new opportunities for studies of electricity consumption pat-
terns. Use of smart metering is promising, but has some disad-
vantages concerning low quality of data which occurs because 
of missing data during periods, and sometimes unsynchronized 
data due to “daylight saving times” conversion [2]. These prob-
lems can be solved by filtering erroneous data to remove data 
that are out of predefined limits [2]. Measurement of end-uses 
on appliance level remains however to be very time consuming 
and expensive, so the possibility to model segmented end-use 
demand based on metering of total electricity consumption is 
important [7]. 

The paper presents results from a Norwegian Research 
project “Electricity Demand Knowledge – ElDeK” (2009–
2012). The project was a part of the national research pro-
gram RENERGI and was financed by the Research Council of 
Norway, Norwegian Water Resources and Energy Directorate 
(NVE) and Enova SF. The study refers to the existing conditions 
in Norway for climate and consumption patterns, but the meth-
od itself can be adjusted and applied to other countries. The 
study was initially inspired by an analysis of EPRI [1], but the 
developed method differs substantially from EPRI’s approach.

Data Sample
The present study is based on primary data from 75 household 
customers, which was collected and verified within the ElDeK 
project. Using smart metering technology, the project col-
lected the total hourly electricity consumption during a period 
of one year from each customer. In addition, high-resolution 
(1 minute) metered data of more than 500 different appliance-
specific loads as water heaters, washing machines and stoves 
for a shorter time period of 4–5 weeks was collected. Figure 1 
shows daily average energy consumption profiles for groups 
of customers. The chart shows groups of less than 7,500 kWh/
year up to more than 30,000 kWh/year along the Y axis, and 
according to the hour of peak (High night, high day, high 
evening) and special low or high energy factor (Low Power – 
High Power) along the X axis. Figure 1 shows that all customers 
are peaking during hours 09–17 or during hours 17–23, except 
some customers that have a low load factor since they are found 
in the High Power group. 

Sociological data about the individual households was also 
collected, describing different properties as for example floor 
space, building’s year of construction, number of persons living 
in the household, income, general space heating patterns etc. 
for each participating household. Useload offers possibility of 
filtering data according to the sociological properties of each 
household for stratification purposes [3]. The filtering is used 
to assign each household into different customer strata, to im-
prove the resulting statistical analysis. In this paper the number 
of persons living in each household was the only sociological 
variable that was used, since this has resulted in only three cus-
tomer groups or strata. As the number of metered customers is 
as low as 75, only three strata could be applied in this project so 
that each stratum would contain a significant number of cus-
tomers. 

Questionnaires from each household are obtained, and the 
answers in the questionnaires contain data that places the 
household into one of the following three strata:

•• Stratum 1: Households of young singles or couples without 
children (one–two inhabitants).

•• Stratum 2: Households with more than two inhabitants – 
families with children.

•• Stratum 3: Households with retired one–two inhabitants.

The only secondary data used in the project are daily averages 
of outdoor temperatures, collected by the Norwegian Meteoro-
logical Institute (DNMI). Daily averages of temperatures were 
used because hourly data is less available. Earlier experience 
has shown that daily averages of temperatures are sufficient for 
modelling of a building’s energy demand, when the energy de-
mand is modelled for each hour separately [2].

Prior to analysing the data for weather dependency, the data 
series were quality assured to avoid erroneous data as part of 
the analysis. Erroneous data are the result of problems like me-
ter errors, recorder failure, data transmission problems and 
human failure. Metered data from smart metering and from 
end-use metering contains data quality information, and this 
has been used for filtering: Values that have low quality or have 
been estimated by the DSO are then removed from the data 
prior to analysis. Suspicious data as extreme low or zero values 
are not removed if the quality indicator indicates good data. 
Other filtering methods can be selected by the user as for ex-
ample filtering out data based on pre-set limits.

Estimation of Weather Dependent Load
The weather dependent load is defined as electricity used for 
space heating and air conditioning. However, the electricity 
demand of the weather dependent load (i.e. the heating) is not 
directly proportionate to the outdoor temperature. An example 
of this is that two consecutive cold days do not result in the 
same demand, since the second day will require more heating 
power due to aggregation of coldness in the building’s struc-
ture. In the mathematical model for electricity demand the load 
is described to be dependent on the temperature of the current 
day and on the previous day. The weight of current and previ-
ous daily temperature for each hour of the day is determined 
by using stepwise regression to find the best fit showing lowest 
regression error. Although only daily averages of temperature 
are used, the demand of each hour is regressed separately, so 
the intra-day hourly distribution is based on metered data. 

Model of expected hourly energy demand 
The mathematical model developed for the expected hourly 
energy demand of a building has two main components; one 
which specifies how the electricity load is dependent on out-
door temperature for space heating and cooling, and a second 
that reflects electricity consumption for appliances. The stand-
ard deviation of the energy demand is modelled separately to 
determine the coincident peak demand. The model of the ex-
pected demand is specified in Equation 1, where the factors 
ah, ac and b are estimated by regression based on the measured 
electricity consumption and the belonging temperatures, tnh 
and tnc. The model is estimated for each of the three household 
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groups described in Section Data Sample. The estimated factors 
are then used to make hourly electricity consumption profiles 
for each of the specified household groups. 

The new method detects the weather dependency factors 
such as ah and ac of Equation 1, and also how the outdoor tem-
perature should be normalized in order to model thermostat 
settings and saturation effects. Saturation in this context means 
that the output from the heating or cooling system has reached 
the maximal limit dependent of the hour of day i.e. the maxi-
mum installed capacity. Equation 1 is set up for each hour and 
for each day-type and season, and models how heating, cooling 
and appliances are dependent on the outdoor temperature:

	 Equation 1

Where:
P:	 Total Power consumption of the building
ah:	 Factor for current day’s temperature corrected for the heat-

ing system
tnh: 	Temperature corrected for the heating system, weighted 

value of current and yesterdays outdoor temperature
b: 	 Constant – energy use of end-use appliances (data per hour 

– season and day-type)
ac:	 Factor for current day’s temperature corrected for the cool-

ing system (i.e. air conditioning)
tnc: 	 Temperature corrected for the cooling system, weighted 

value of current and yesterdays outdoor temperature

Equation 1 specifies that the hourly energy demand P is linearly 
dependent on the normalized outdoor temperature for space 
heating tnh, and similar temperature tnc for cooling/air condi-
tioning. The demand of appliances is governed by a constant 

(hour, day type and season dependent) b. Section Analytical 
Results describes how appliance load is further segmented into 
separate end-uses by use of Equation 1, but with separate data 
for each appliance.

Normalized temperature for heating and air conditioning
The electricity consumption of buildings does not immediately 
respond to the outdoor temperature, since much heat is stored 
in the building’s structure. As it was mentioned earlier, when 
the temperature changes to colder weather, the temperature of 
the material in the construction is slowly reduced, and after 
a certain time the indoor temperature is reduced, so that the 
thermostat turns the heating on. The method incorporated 
in Useload now identifies the thermal inertia of the heating 
and cooling systems, and composes normalized temperatures 
to model this, based on time constants for heating wh and air 
conditioning wc. 

Space heating is proportionate to the normalized outdoor 
temperature for a given hour. An example of this is illustrated 
in Figure 2: when the saturation temperature (tsh) is reached 
(-20 °C in the example), the electricity used for heating will not 
increase further. At temperatures greater than (tth) (or +15 °C 
in the example), the heating system is turned off, setting the 
heat demand to zero. 

The normalized temperature curve for heating is determined 
by the saturation set point tsh and the thermostat setting tth. The 
values of tsh and tth are determined within Useload based on the 
time series of electricity demand and temperature in a stepwise 
regression analysis, where all “possible” values of tsh and tth are 
tried in the regression analysis in turn, and where the “best” 
tries are recorded. To decide on the “best” values the “sum of 

Figure 1. Cross sectional analysis of customer daily averages of total energy demand for 75 customers participating in the ElDeK project. 
The figure is produced using the Useload software, [3].

 

 

𝑷𝑷 = 𝒂𝒂𝒉𝒉 ∙ 𝒕𝒕𝒏𝒏𝒏𝒏 + 𝒃𝒃 + 𝒂𝒂𝒄𝒄 ∙ 𝒕𝒕𝒏𝒏𝒏𝒏 



7-027-13 MORCH ET AL

1930  ECEEE 2013 SUMMER STUDY – RETHINK, RENEW, RESTART

7. Monitoring and evaluation

squares” (SSD) value of the regression is used. The SSD value 
indicates how well the normalized temperature series apply to 
the recorded demand. The same principle applies for definition 
of the normalized temperatures for cooling/air-conditioning. 

Weighting current and yesterday’s temperature
As mentioned previously, the building’s electricity demand de-
pends both on the current and previous day’s temperature due 
to the slow response on temperature change of the building. 
This behaviour is dependent on the material of the building. 
Concrete buildings will e.g. response slower on temperature 
changes and will have a greater dependency on “yesterday’s” 
temperature.

The following equation is used to estimate the weighted tem-
perature consisting of the current and previous day’s outdoor 
temperature. The weight factors are modelled separately for 
heating (wh) and cooling (wc), and are identified from analys-
ing the metered demand regressed on the outdoor temperature.

	 Equation 2

Where
t: 	 Weighted temperature 
tc: 	 Outdoor temperature of current day
ty: 	 Outdoor temperature of day before current day
w: 	 Weight factor – 60 % to 100 %. Different weight factors 

exist for cooling (wc) and heating (wh).

All factors in Equation 2 are estimated and stored in the data-
base for each hour, day type (work day or weekend) and season. 
Similarly, the saturation temperature and the thermostat tem-
perature (Figure 2) for heating (tsh and tth) and cooling (tsc and 
ttc) are also estimated. In addition to the factors described, the 
standard deviation of the hourly energy demand is estimated 
based on metered load and stored in the database.

Estimation of factors for the heating system
For a given building, the optimal heating system factors for 
an hour, season and day type are estimated with the following 
method:

Useload identifies different day types that indicate a sea-
son e.g. “winter months” and whether it is a working day or a 

weekend/holiday. Within each day type, each hour is modelled 
separately. Thus, during estimation of the best model fit each 
given day type and each hour interval during the day (hour) 
is considered in turn. The program then circulates through all 
possible combinations of model settings for tsh, tth and wh. When 
a model description is set, the initial data set of each building, 
consisting of pairs of hourly electricity demand and outdoor 
temperature, is altered according to the settings as follows: 

•	 First, the wh is set. Possible values are from 0 to 1.

•	 Second, the weighted temperature dependent on tempera-
tures for current and previous day and the wh (see Equa-
tion 2) is formed.

•	 Third, the temperature is then altered according to the set-
tings of tth and tsh to form the normalised temperature ac-
cording to Figure 2.

The initial data set is at this point altered to suit the current 
setting of the model. In the next step the data is analysed by 
regression to find the least squares estimates. After looping 
through all possible combinations (limits to each factor can be 
set by the user) of the model set points, the combinations that 
result in the lowermost value of SSD (“sum of squares”) is iden-
tified, and the best regression line is found. For air conditioning 
a similar method will be used, but the normalization of the 
outdoor temperature will simulate air conditioning thermostat 
settings and saturation levels.

Final Calculation
Finally, averages and standard deviations are calculated for 
each customer group (the three stratum groups defined). The 
total standard deviation for each hour, typical for one customer 
belonging to the group of customers, is found by adding up the 
squares of the standard deviations for the metered households, 
and then use the formula in Equation 3:

	 Equation 3

Where
σit:	 Standard deviation of each metered customer, i, for each 

hour, t.
σt:	 Standard deviation used to model the behaviour of one cus-

tomer from a group of customers
N:	 The number of metered customers within each customer 

group.

The generated sets of estimated values are stored in a database 
along with an ID that uniquely identifies the profile values. The 
sets consist of values for a 24 hour profile, for each day-type 
and season.

Estimation of Weather Independent load 
When the weather dependent share of the customer’s electric-
ity consumption is analysed, we are left with a residual share of 
the total load that is assumed to cover demand from appliances 
and static heating (heating that is not directly connected to the 
outdoor temperature such as hot tap water). We call this part of 

 
 Figure 2. Example of normalized temperature for heating.

𝒕𝒕 = 𝒘𝒘 ∙ 𝒕𝒕𝒄𝒄 + (𝟏𝟏 − 𝒘𝒘)𝒕𝒕𝒚𝒚 𝝈𝝈𝒕𝒕 =
𝟏𝟏
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the demand the weather independent part, which is defined by 
the constant value b in the load profile for the total demand (ref. 
Equation 1). Each appliance for a customer group is modelled 
separately based on metered data.

Appliance modelling
The modelling of end-use appliances for a given customer 
group is based on measurements of four weeks of metered de-
mand with one minute intervals separated on different types 
of appliances. The measurements are analysed by a regression 
against outdoor temperature, and dependency of temperature 
is found along with the constant demand and the standard 
deviation of the demand. We found that the temperature de-
pendency of most appliances is negligible, and consequently 
in the ElDeK Project it was decided to neglect the temperature 
dependency of end-use appliances. The analysis determines a 
profile for the appliance with separate values for each hour, for 
different seasons and day-types. The standard deviation of the 
hourly demand is transformed from the basis of one minute 
intervals to hourly demand by Equation 4:

	 Equation 4

Where
σmt:	Standard deviation of each minute, m, during a specific 

hour, t.
σt:	 Standard deviation that models the behaviour during an 

hour, t.

When applying Equation 4 one assumes that there is no sig-
nificant correlation of the demand from one minute interval to 
the demand of other intervals. The effect of cross-correlations 
among minute intervals has, however, not been studied. By dis-
regarding the effect of correlation, the hourly standard devia-
tion will be less than the real value.

An example of appliance model is presented in Figure  3, 
where WORK/HIGL means Workday/High Load period and 
WEND/HIGHL means Weekend/High Load period. 

End-use segmentation of an average household’s demand
Useload generates electricity demand for all appliance groups 
identified in the data sample, and scale the demand according 
to the typical number of appliances that is owned and used 
by a household. The data describing the number of appliances 
owned by each household are based on a customer survey in 
REMODECE project [6]. If the predicted electricity consump-
tion for an hour, including appliances and weather dependent 
demand, is less than the metered total – the remaining demand 
is considered to be the result of non metered appliances, i.e. the 
residual. The residual may also be negative, meaning that the 
sum of appliance and weather dependent load is greater than 
the total simulated demand, in such cases the appliance specific 
load may be automatically reduced by Useload to fit with the 
metered total load.

Analytical Results
Using the top-down methods described in this paper, an analy-
sis of the total hourly demand of all customers that have partici-
pated in the ElDeK project has been carried out. The analysis of 
the customers demonstrates how the new methods apply, and 
also functions as a quality assurance measure for the ElDeK 
project. 

Each stratum group contains different number of custom-
ers, but the number of customers is sufficient to give statisti-
cally significant results for all strata. By using stratified random 
sampling [10] in the sample design, the results of the analyses 
are altered so that the proportion of each stratum in the total 
population of Norway is obtained. 

Average electricity consumption
The average metered annual electricity consumption of each 
of the 75 households that have participated in the metering 
campaign is found to be 20,138 kWh, and the average maximal 
coincident hourly electricity demand is found to be 6,254 W. 
This gives a load factor of 40 % – which is quite high, but con-
sidered that the estimated peak is the average/coincident de-
mand referencing a big number of households – the value is 
reasonable. 

Figure 4 shows simulated average electricity consumption 
during workdays based on measurements from the ElDeK 
project. The consumption is segmented into typical end-use 
demand groups. The total demand shown in the figure is found 
by scaling of the total load, to the average consumption for 
Norwegian households in general (16,500  kWh/year). The 
scaling does not affect the end-use demand, so the distribu-
tion of the hourly residual then indicates the quality of the 
model. As can be seen the residual is greatest during night and 
early hours during day-time. The reason for this is that the me-
tered households have a larger energy demand than the aver-
age norwegian household, so that the heating demand will be 
higher than normal. The residual is low during evening when 
the use of computers and entertainment appliances is high, 
so the residual is most probably not due to this type of appli-
ances. Figure 5 shows the distribution of the annual electricity 
consumption of end-use appliances based on the ElDeK data. 
45 % of the electricity demand is due to space heating. The rest 
of the electricity consumption is divided into residual 19 %, 
hot water 12 %, lighting 5 % and other appliances (residual) 
19 %.

The buildings’ consumption shows a significant consistence 
with the outdoor temperature, and approx. 45 % of the de-
mand is identified as being weather dependent. A residual of 
approx. 19 % of the total consumption is found in our analysis. 
The residual is the part of the demand that is not allocated to 
any end-use appliance. Much of this residual is most probably 
due to space heating, although it is not weather dependent. 
Consumption of some space heating appliances as electric 
floor heating cables will be more or less constant since the pur-
pose is to raise the temperature of the floor to a comfort level, 
and the thermostat often functions poorly due to slow thermal 
response of the floor. The residual’s magnitude and distribu-
tion during day signalises that it most probably is not due to 
electric lighting, since the highest volume appears during late 

𝝈𝝈𝒕𝒕 =
𝟏𝟏
𝟔𝟔𝟔𝟔 𝝈𝝈𝒎𝒎𝒎𝒎𝟐𝟐

𝟔𝟔𝟔𝟔

𝒎𝒎!𝟏𝟏
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 Figure 3. Example of appliance model.

Figure 4. Estimated yearly average demand during workdays segmented into main end-use groups.

 

 

 
 Figure 5. Distribution of annual electricity consumption.
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night until early afternoon, when use of lighting is expected 
to be low.

The electricity shares of Figure 4 comply very well with the 
results of the REMODECE project [6] what contributes to vali-
dation of the new method of estimating the weather dependent 
load – “Space heat”. In REMODECE the Space heat was found 
as the residual – the sum of all metered end-use subtracted 
from the total load. Using the new method for detecting space 
heating gives approximately equal results if we assume that the 
“residual” also goes to space heating.

Conclusions
This paper describes how weather dependency and end-use 
segmentation can be determined based on hourly metering of 
the total consumption of smart metered customers. Knowledge 
of the dependency on weather of the demand can have great in-
terest for production planning, and also for the development of 
the total energy production system – since space heating can be 
accomplished by other energy carriers such as bio energy, oil/
gas and district heating. The fact that space heat has a flexibility 
regarding energy carrier and considerable thermal inertia ena-
bles space heating and hot water heating as a potential Demand 
Response Resource (DRR). 

It will be possible to use the methods described in this paper 
to systematically divide the user demand into weather depend-
ent load and appliance load, resulting in segmented time series 
with hourly resolution for each separate customer. The residen-
tial customer (under a spot price contract and/or Time of Use 
transmission contract) will earn information that enables plan-
ning of how the use of different appliances during the day could 
reduce the electricity bill. Examples are to avoid the peak hours 
with high electricity prices to do household tasks as dishwash-
ing and clothes washing and drying etc. Such conduct would 
also lead to reduced demand during peak hours which in turn 
would off-load the distribution grid.

The described method can also be applied to aggregated sets 
of customers, as for example all residential customers in a spe-
cific region or all residential customers in a country. The ben-
efit for the Distribution System Operator (DSO) would be e.g. 

a tool for better forecasting load distribution during the day, 
or to determine which user appliances are in use at a specific 
moment – which is helpful for reducing bottleneck situations 
locally in the distribution grid – or in general to support energy 
efficiency measures.
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