

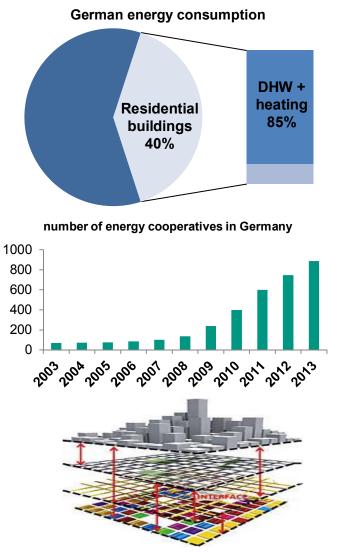

# Integrating residential energy efficiency measures into optimizing urban energy system models

Kai Mainzer, Russell McKenna, Wolf Fichtner

eceee 2015 Summer Study on energy efficiency, Presqu'île de Giens, June 5th, 2015

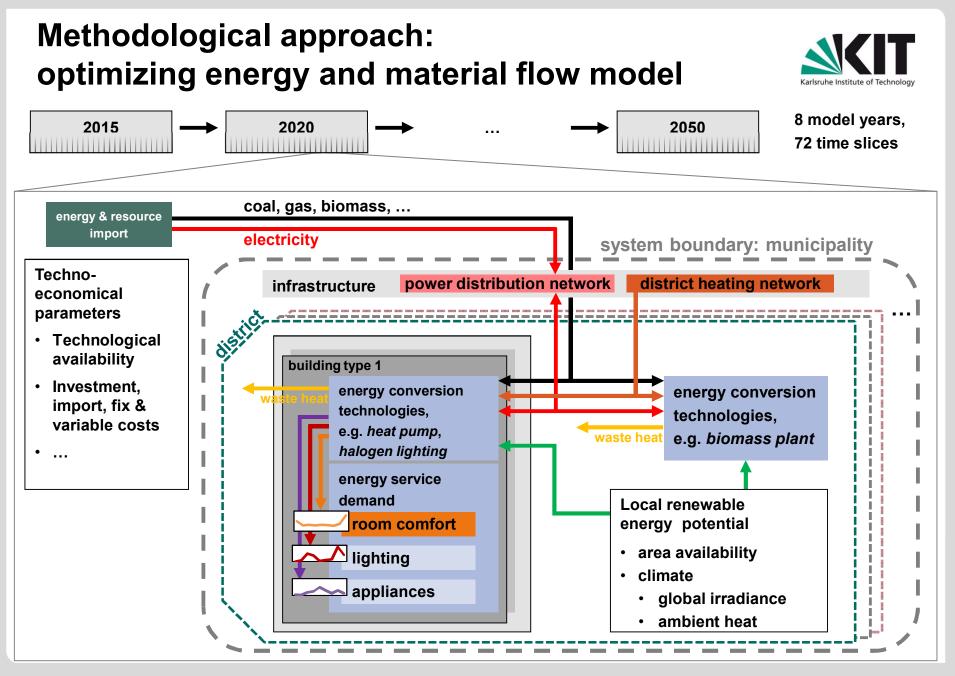
INSTITUTE FOR INDUSTRIAL PRODUCTION (IIP), CHAIR OF ENERGY ECONOMICS




KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

commons.wikimedia.org

# **Background and motivation**

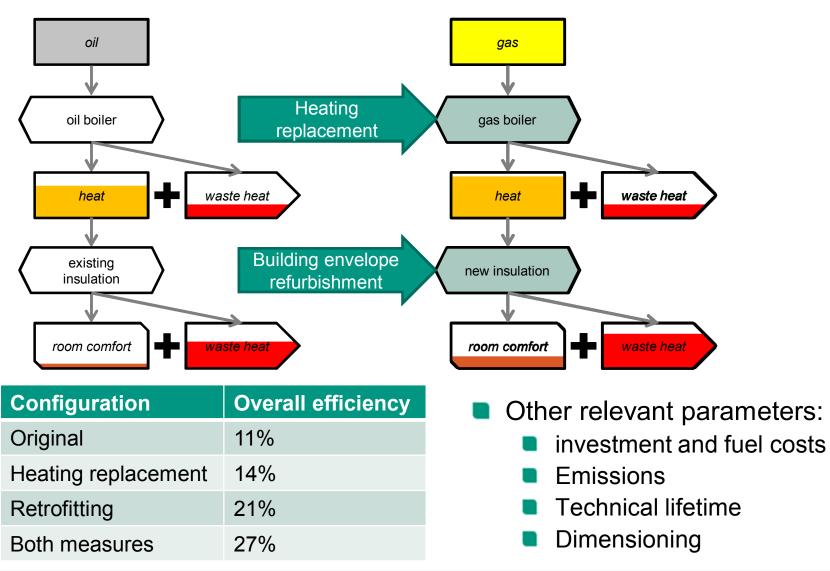

- Residential building sector accounts for almost 40% of German energy consumption; 85% of this due to domestic hot water and space heating
- Political objective: 80% primary energy demand reduction until 2050
- Trend: local stakeholders get involved
  - organized in local energy cooperatives
  - formulation of energy schemes and objectives for municipalities
- How can cities be enabled to determine optimal pathways to reach their objectives?
- Complexity of interdependencies between technologies, energy carriers and stakeholders in urban energy systems calls for optimization methods





sources: [BMWi 2014], [AEE 2014], commons.wikimedia.org

2



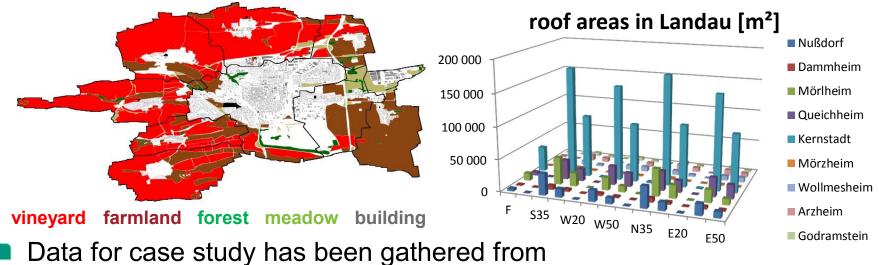

**3** 05.06.2015 Integ

Integrating residential energy efficiency measures into optimizing urban energy system models

# Methodological approach: Representation of energy efficiency measures

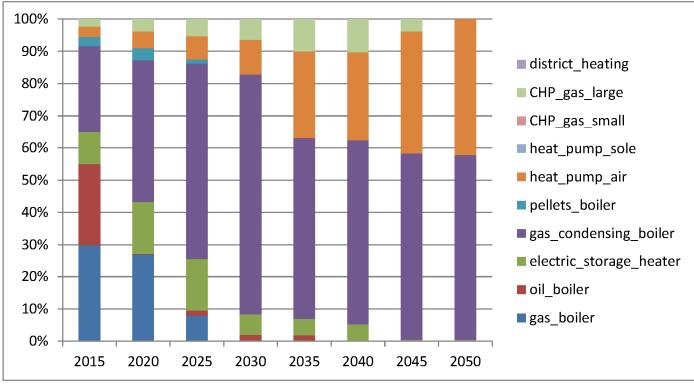





**4** 05.06.2015

Integrating residential energy efficiency measures into optimizing urban energy system models

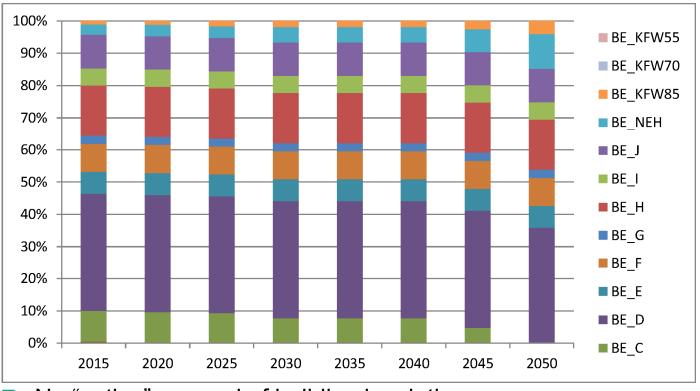
# Case study: Landau, Germany




- 43,000 inhabitants, 83 km<sup>2</sup> in 9 districts
- Local stakeholders strongly encourage renewable energies and energy efficiency: formulation of an energy scheme [AES 2013]



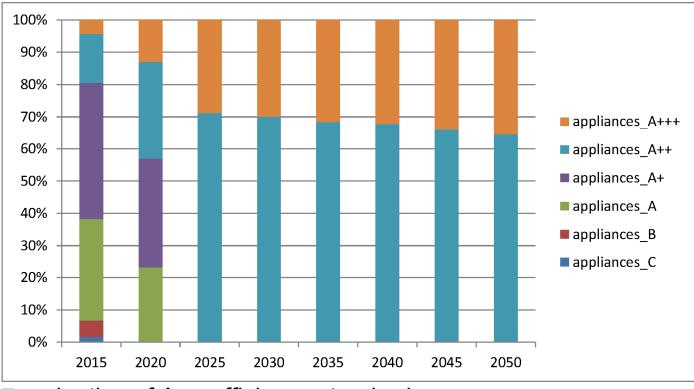
- OpenStreetMap (geographical extent, buildings footprints, area availability)
- Federal statistics office (heating technologies in stock, building info)
- several other sources for climate, irradiation, technological parameters, ...
- PV potential analysis, considering roof areas' irradiance profiles






Gas boiler and heat pumps are favored

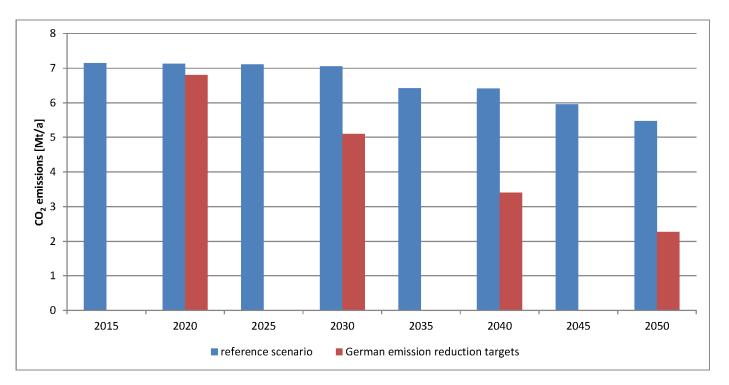
6






No "active" renewal of building insulation

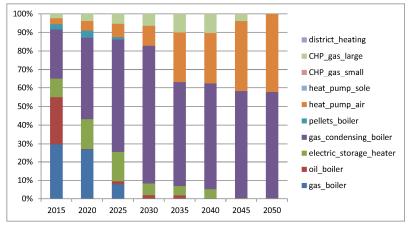
7



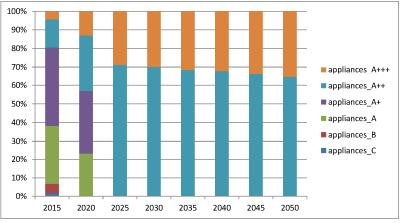



adoption of A++ efficiency standard

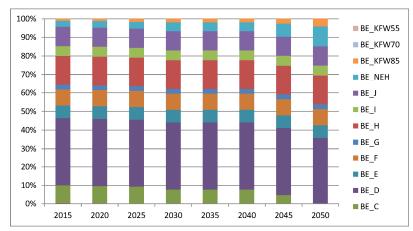
8



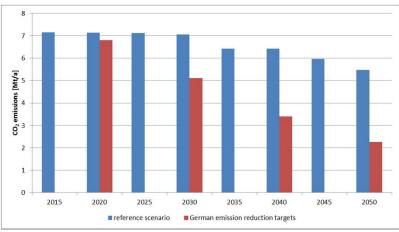




GHG reductions not sufficient to meet targets

9





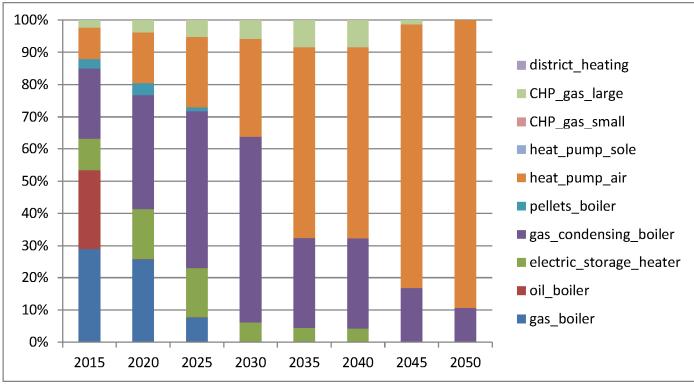


#### Gas boiler and heat pumps are favored



adoption of A++ efficiency standard



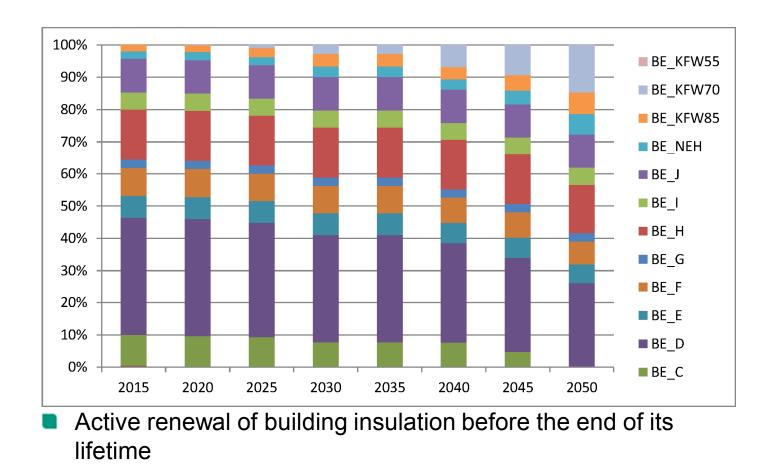
#### No "active" renewal of insulation




GHG reductions not sufficient to meet targets

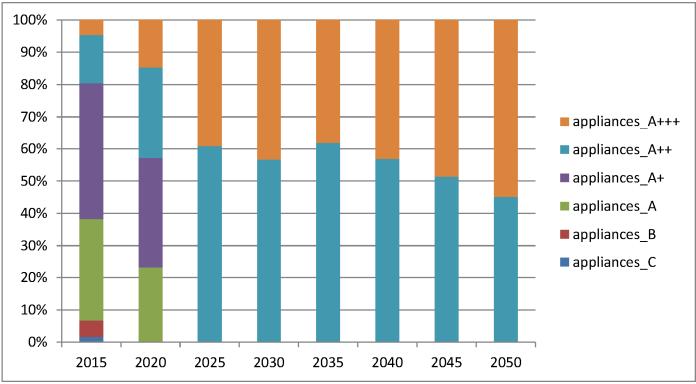
No significant incentives for EE/RE investments => targets not reached

**10** 05.06.2015 Integrating residential energy efficiency measures into optimizing urban energy system models





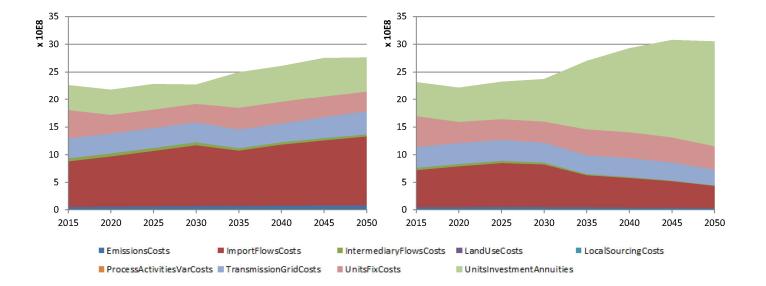

#### Increased use of more efficient heat pumps


11





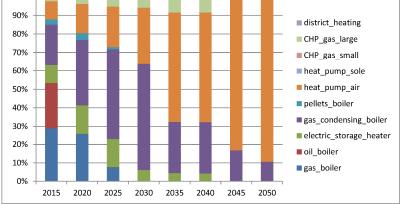
12



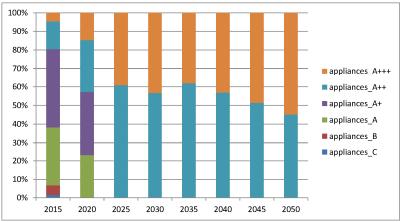



Increased share of most efficient appliance class A+++

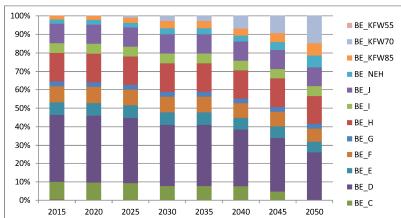
13



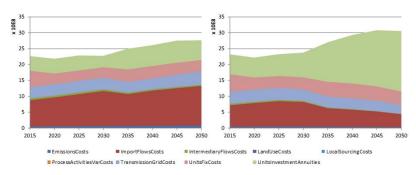




# Larger investments are (partly) remedied by lower import costs. Total costs: +4.88%

05.06.2015 Integrating residential energy efficiency measures into optimizing urban energy system models


14




#### Increased use of more efficient heat pumps



Increased share of most efficient appliance class A+++



Active renewal of insulation before the end of its lifetime



- Larger investments are (partly) remedied by lower import costs
- A pathway which meets the German Governments objectives can be achieved with only minor increases in system costs

**15** 05.06.2015 Integrating residential energy efficiency measures into optimizing urban energy system models

# **Critical appraisal**



- Perfect foresight: no uncertainties
- Macro-economic perspective: not necessarily coincident with local stakeholder's perspective(s)
- No statement how optimal pathway could be incentivized
- Not considered:
  - Subsidies and other political incentives
  - Non-economical incentives
  - user behaviour and demand side management
  - Emerging technologies
- Information on energy infrastructure very limited, no model-endogenous infrastructure extension
- Volatility to input parameters not quantified

# **Summary and outlook**



- A new model for urban energy system modelling has been presented
- It enables policy makers to derive cost-optimal investment pathways for reaching their targets
- The technological (demand & supply side technologies) and spatial detail exceeds that of previous models
- Application to case study demonstrates its use and possible results:
  - targets will not be reached with "business as usual"
  - A target-compliant pathway can be achieved with only minor cost increases
  - Heat pumps, building retrofitting and more efficient appliances are the key elements for this strategy

#### Further work:

- Automation of data aggregation
- More detailed renewables potential analysis (PV, biomass, wind)
- Additional scenarios (especially price development)
- implementation of sensitivity analysis
- Application and validation with more case studies



## Thank you very much for your attention

#### contact: Kai Mainzer

kai.mainzer@kit.edu

Karlsruhe Institute of Technology (KIT) Institute for Industrial Production (IIP) Chair of Energy Economics

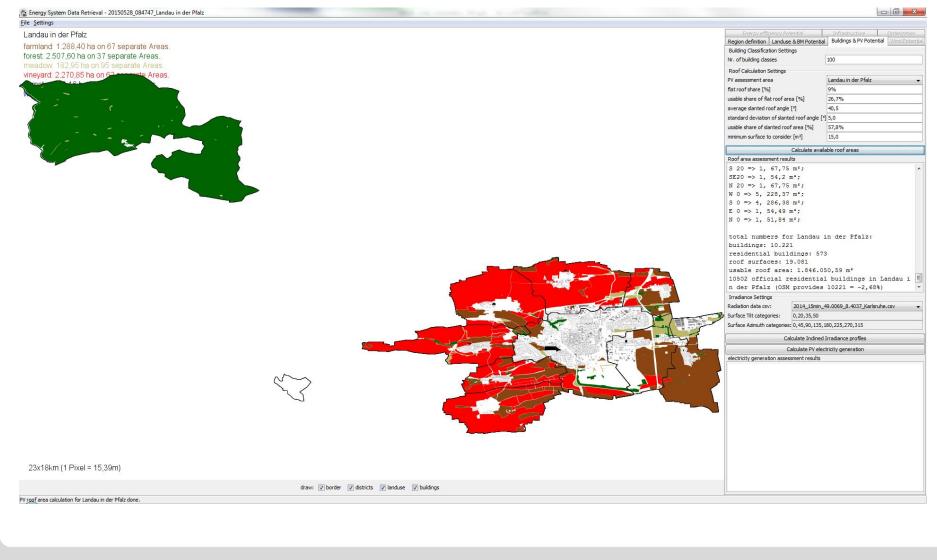
**18** 05.06.2015

Integrating residential energy efficiency measures into optimizing urban energy system models

# References



- [BMWi 2014]: Bundesministerium f
  ür Wirtschaft und Energie (BMWi) (Ed.) (2014): Hoher Energieverbrauch des Geb
  äudesektors. Available online at <a href="http://www.bmwienergiewende.de/EWD/Redaktion/Newsletter/2014/22/Meldung/hoher-energieverbrauch-desgebaeudesektor.html">http://www.bmwienergiewende.de/EWD/Redaktion/Newsletter/2014/22/Meldung/hoher-energieverbrauch-desgebaeudesektor.html</a>.
- [AEE 2014]: Agentur f
  ür Erneuerbare Energien (AEE) (Ed.) (2014): Wachstumstrend der Energiegenossenschaften ungebrochen. Available online at <u>http://www.unendlich-viel-</u> energie.de/wachstumstrend-der-energiegenossenschaften-ungebroche.
- [AES 2013]: Arbeitsgruppe Energiekonzept Südpfalz (Ed.) (2013): Energiekonzept Südpfalz. Available online at http://www.energie-suedwest.de/wp-content/uploads/2013/08/energiekonzept\_suedpfalz.pdf, checked on 5/27/2015.
- [Jebaraj, Iniyan 2006]: A review of energy models. In *Renewable and Sustainable Energy Reviews* 10 (4), pp. 281–311. DOI: 10.1016/j.rser.2004.09.004.
- [Johnston et al. 2005]: Johnston, D.; Lowe, R.; Bell, M. (2005): An exploration of the technical feasibility of achieving CO2 emission reductions in excess of 60% within the UK housing stock by the year 2050. In *Energy Policy* 33 (13), pp. 1643–1659. DOI: 10.1016/j.enpol.2004.02.003.
- [Merkel et al. 2014]: Merkel, Erik; Fehrenbach, Daniel; McKenna, Russell; Fichtner, Wolf (2014): Modelling decentralised heat supply: An application and methodological extension in TIMES. In *Energy* 73, pp. 592– 605. DOI: 10.1016/j.energy.2014.06.060.
- [Keirstead et al. 2012]: Keirstead, James; Jennings, Mark; Sivakumar, Aruna (2012): A review of urban energy system models: Approaches, challenges and opportunities. In *Renewable and Sustainable Energy Reviews* 16 (6), pp. 3847–3866. DOI: 10.1016/j.rser.2012.02.047.
- [Jennings et al. 2014]: Jennings, Mark; Fisk, David; Shah, Nilay (2014): Modelling and optimization of retrofitting residential energy systems at the urban scale. In *Energy* 64, pp. 220–233. DOI: 10.1016/j.energy.2013.10.076.


# Backup: Common approaches to urban energy system modelling



- National energy system models
  - Overview: [Jebaraj, Iniyan 2006]
  - Large scale power plants, no decentral technologies, heat mostly neglected
- Models which focus on heat on a national level
  - e.g. [Johnston et al. 2005], [Merkel et al. 2014]
  - No spatial resolution, no local renewable energy potentials
- Few models focus on regional/urban energy systems
  - Overview: [Keirstead et al. 2012]
  - Demand side efficiency measures usually not considered
- Few models consider (demand side) energy efficiency measures
  - e.g. [Jennings et al. 2014]
  - Only building retrofit measures, strongly simplified geographical structure and building stock
- No models which explicitly model regional energy systems, considering supply & demand side technologies with detailed geographical & technological resolution are currently available

### **Backup: Data aggregation screenshot**





**21** 05.06.2015

# **Backup: optimization model screenshot**



| 🕌   🏹 🚹 🚽   🛛 Anwendung:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stools                                                                                                                                                                                                                                                                                                                                                                                                           | Rechnungen                                                                                                                                                                                                              | _ 0 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Datei Start Freigeben Ansicht Verwalte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         | ~ (                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 🔄 😑 = 🛧 🕌 🕨 Rechnungen 🕨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         | Task-Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C:\Windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Name                                                                                                                                                                                                                                                                                                                                                                                                             | Datei Optionen Ansicht<br>Prozesse Leistung Benutzer Details                                                                                                                                                            | Dienste                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iteration: 1050727 Dual objective<br>Iteration: 1055033 Dual objective<br>Iteration: 1055033 Dual objective<br>Elapsed time = 932.14 sec. (311621.86 f<br>Iteration: 1057612 Dual objective<br>Iteration: 1057612 Dual objective<br>Iteration: 1057931 Dual objective<br>Iteration: 1061491 Dual objective<br>Iteration: 1062770 Dual objective<br>Iteration: 1062770 Dual objective<br>Iteration: 106384 Dual objective<br>Iteration: 1065384 Dual objective<br>Elapsed time = 979.91 sec. (321622.05 f<br>Removing perturbation.<br>Markowitz threshold set to 0.1<br>Iteration i105533 Dual objective<br>Root relaxation solution time = 986.56<br>Nodes<br>Node Left Objective IInf Bes:<br>* 0+ 0 2.66<br>Found incumbent of value 2.6684058e+001 | = 40358300056.041519<br>= 40359122549.018967<br>= 40359209135.138321<br>ticks, 1055424 iterations><br>= 40359291646.079422<br>= 4035924654.043129<br>= 403601757.017540<br>= 4036017274.870010<br>= 403601987134.440010<br>= 403601987746.234665<br>= 40360198176.184998<br>ticks, 1065455 iterations><br>= 40360198212.668953<br>sec. (323479.90 ticks><br>Cuts/<br>t Integer Best Bound ItCnt Gap<br>5841e+015 | <ul> <li>CPU<br/>9% 1,89 GHz</li> <li>Arbeitsspeicher<br/>21/128 GB (16%)</li> <li>Ethernet<br/>Nicht verbunden</li> <li>Ethernet<br/>Nicht verbunden</li> <li>Ethernet<br/>Ges.: 560 KBit/s Empf.: 0 KBit/s</li> </ul> | CPU Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>20150526_101448</li> <li>20150526_101448_gas_Preisschock_2035_50pc</li> <li>20150526_101448_ges_Preisschock_2035_50pc</li> <li>20150526_101448_gs_Preisrueckgang_2035</li> <li>20150526_101448_gas_Preisschock_2020</li> <li>20150528_151345</li> <li>20150528_151341</li> <li>20150528_151337</li> <li>20150603_151449_Standard</li> <li>20150602_151450</li> <li>Y</li> <li>47 Elemente 1 Element ausgewählt (1,81 KB)</li> <li>Typ: Windows-Batchdatei, Größe: 1,81 KB, Änderungsdatum: 0</li> </ul>                                                                                                                                                                                                                                       | <ul> <li>cplex.opt</li> <li>varLevels.gdx</li> <li>UESM_restart_newData.bat</li> <li>restart_newData.gms</li> <li>restart_ERS.gms</li> <li>UrbanEnergySystemModel_landau_oldData.g00</li> <li>Änderungen.txt</li> <li>joblist.sh</li> <li>UESM_output_calc.bat</li> <li>UESM_restart_ERS.bat</li> </ul>                                                                                                          | 🔿 Weniger Details 🛯 🔕 Ressourcenn                                                                                                                                                                                       | Unit and Laboration Laboration of the monitor offinen       A       Low Michael Caschwindigkeit:       3,5         9%       1,89 GHz       Sockets:       1         9%       1,89 GHz       Kerne:       6         Prozesse       Threads       Handles       Logische Prozessoren:       12         45       813       14583       Virtualisierung:       Akt         L1-Cache:       384       12-Cache:       1,5         2:08:40:55       L3-Cache:       12, |
| 🌍 🚡 🗵 🖲 🕌 Rechnungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C:\Windows\system                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         | ▲ 🅞 🔁 👍 16:08                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

**22** 05.06.2015

# **Backup: Technical details**



- Implementation:
  - data aggregation and calculations: Java
  - optimization model: GAMS, solver: CPLEX, options:
    - MIP relaxation: dual simplex
    - Sub-problems: automatic (CPLEX)
- model size
  - 14,018,281 rows 7,251,113 columns 42,793,441 non-zeroes 20,136 discrete-columns
  - Reduced MIP:
    - 1,886,203 rows, 1,810,156 columns, and 7,173,948 nonzeros, 19,200 binaries
  - Model size: up to 70 GB
- Machine
  - 64 bit, Intel Xeon E5-1650 v2 @ 3.5 GHz, 12 Threads
  - 128 GB DDR3 RAM
  - Solving time: ~20 hours

# **Backup: Objective function**



- Minimization of all decision relevant system expenditures, discounted to base year (discount rate: 5%)
- The cost function is composed of several cost factors:
  - Import flow costs are associated with the import and export of energy carriers. These flows are valued by wholesale market prices.
  - Transmission grid costs represent the costs that arise from using the national transmission grid for these imports and exports.
  - Intermediary flow costs arise from the utilization of the local transport grids.
  - Investment annuities for installed units represent the share of investment costs that are allocated to each year the technology is in use.
  - Fixed and variable costs arise from the ownership and utilization of technologies.
  - Emission costs are caused by applying a CO<sub>2</sub>-emission penalty on the utilization of technologies.

# **Backup: Constraints**



- Several constraints provide technological as well as economical bounds to the problem. The most important constraints are:
  - Energy balance constraints: energy has to be balanced at all times and at all locations in the model.
  - flow restrictions: flow between districts can be restricted (in order to represent transportation bottlenecks) or completely forbidden (if districts are not connected).
  - Iand use constraints:

The amount of available land, which is essential for some technologies such as PV modules which represents potential restrictions.

#### emission restrictions:

constrain the amount of  $CO_2$  as well as  $PM_{10}$  that is emitted through the city's energy system during each year.



- Multi-periodic approach
- **72 time slices per year:** 
  - 4 seasons (spring, summer, fall, winter)
  - 2 day types (working day, weekend)
  - 9 continuous blocks of 5 hours (night) and 2 hours (day) length each
  - Preserves daily demand and supply (PV) variation
  - Minimizes number of time slices to a (computationally) manageable amount
  - Investment decisions yearly
- Dispatch decisions for each time slice

# **Backup: Technologies**



- 47 technologies in the categories:
  - Heating (11)
  - Lighting (4)
  - Appliances (6)
  - Insulation (14)
  - Decentral power generation (12)

| Kategorie          | Bezeichnung             | scale    | process e        |        | IO_el  | IO_gs IC | 01 1  | U_ps   | iu_ah  | ı0_dh | IO_ht IO   |            | /h 10_ | u P  | O_as   |         | EM_PM10   |              |       |                 |        |            | /arCost [€/kWh] | Life |
|--------------------|-------------------------|----------|------------------|--------|--------|----------|-------|--------|--------|-------|------------|------------|--------|------|--------|---------|-----------|--------------|-------|-----------------|--------|------------|-----------------|------|
| heating_main       | gas_boiler              |          | gas_boil         | 90%    | 6 0    | -6,667   | 0     |        |        |       | 0 6        | 0,6        |        |      | 0      |         | 0,2266667 | 425          | 3600  | 2550            | 3,00%  | 76,5       |                 |      |
| eating_main        | oil_boiler              |          | oil_boile        | 70%    | 6 0    |          | 8,633 |        |        |       | 0 6        | 0 2,6      | 331    |      | 0      |         | 0,7769784 | 600          | 3800  | 3600            | 12,00% | 432        |                 |      |
| neating_main       | electric_storage_heater |          |                  | 100%   | 6 -e   |          |       |        |        |       | 0 6        |            |        |      | 0      | 3,348   | 0         | 458, 3333333 | 800   | 2750            | 3,00%  | 82,5       |                 |      |
| eating_main        |                         |          | gas_con          | 97%    | 6 0    | -6,186   |       |        |        |       | 0 6        | 0 0,1      |        |      | 0      |         | 0,2103093 | 483,3333333  | 3600  | 2900            | 3,00%  | 87         |                 |      |
| eating_main        | pellets_boiler          |          | pellets_         | 78%    | 6 0    |          |       | -7,692 |        |       | 0 6        | 0 1,69     | 923    |      | 0      |         | 876,92308 | 1016,67      | 5000  | 6100,02         | 6,00%  | 366,0012   |                 |      |
| eating_main        | heat_pump_air           |          | heat_pu          | 350%   | -1,714 |          |       |        | -4,286 |       | 0 6        |            |        |      | 0      | 0,95657 | 0         | 1983,333333  | 3100  | 11900           | 2,50%  | 297,5      |                 |      |
| eating_main        | heat_pump_sole          |          | heat_pu          | 380%   | -1,579 |          |       |        | -4,421 |       | 0 6        |            | 0      |      | 0      | 0,88105 | 0         | 2750         | 3100  | 16500           | 2,50%  | 412,5      |                 |      |
| eating_main        | CHP_gas_small           |          | CHP_gas          | 25%    | 6 4    |          |       |        |        |       | 0 10,4     |            | 1,6    |      | 0      | 3,856   | 0,544     | 4000         | 8828  | 9258            | 8,00%  | 740,64     | 0               | 1    |
| eating_main        | CHP_gas_large           |          | CHP_gas          | 27%    | 6 8    | - 29,63  |       |        |        |       | 19,259     | 0 2,3      | 704    |      | 0      |         | 1,0074074 | 3000         | 8828  | 16015           | 8,00%  | 1281,2     |                 |      |
| eating_main        | district_heating        | building |                  | 100%   | 6 0    |          |       |        |        | -4    |            |            |        |      | 0      | 11,8    | 0         |              | 5077  | 351             | 3,00%  | 1519,85    | 0,0602          | 2    |
| eating_support     | solar_thermal           |          | solar_th         | 82%    | 6 0    |          |       |        |        |       | 2,0709     |            | 0      | 0    | 0      | 0       | 0         | 3700         | 1000  |                 | 1,50%  | 114,937321 |                 |      |
| ghting             | incandescent_light_bult |          |                  | 10%    | -0,05  |          |       |        |        |       | 0,0452     |            |        | 0048 | 0      | 0,0279  | 0         |              |       | 2               |        |            |                 |      |
| ghting             | halogen                 |          | halogen          | 16%    | -0,05  |          |       |        |        |       | 0,042      |            |        | ,008 | 0      | 0,0279  | 0         |              |       | 3               |        | 0          |                 |      |
| ghting             | CFL                     | building |                  | 40%    | -0,01  |          |       |        |        |       | 0,006      |            |        | ,004 | 0      | 0,00558 | 0         |              |       | 2               |        |            |                 |      |
| ghting             | LED                     | building |                  | 80%    | -0,01  |          |       |        |        |       | 0,002      |            | 0 0    | ,008 | 0      | 0,00558 | 0         |              |       | 5               |        |            |                 |      |
| ppliances          | appliances_G            |          | applianc         | 135%   | 6 -1   |          |       |        |        |       |            |            |        |      | 0,7407 | 0,558   | 0         |              |       | 1,00E+10        |        |            |                 |      |
| ppliances          | appliances_F            |          | applianc         | 120%   | 6 -1   |          |       |        |        |       |            |            |        |      | 0,8333 | 0,558   | 0         |              |       | 1,00E+10        |        |            |                 |      |
| opliances          | appliances_E            |          | applianc         | 108%   | 6 -1   |          |       |        |        |       |            |            |        |      | 0,9302 | 0,558   | 0         |              |       | 1,00E+10        |        |            |                 |      |
| ppliances          | appliances_D            |          | applianc         | 92%    | 6 -1   |          |       |        |        |       | 0 0        |            |        |      | 1,0899 | 0,558   | 0         |              |       | 1,00E+10        |        |            |                 |      |
| ppliances          | appliances_C            |          | applianc         | 83%    | 6 -1   |          |       |        |        |       |            |            |        |      | 1,2048 | 0,558   | 0         |              |       | 400             |        |            |                 |      |
| ppliances          | appliances_B            |          | applianc         | 61%    | -1     |          |       |        |        |       |            |            |        |      | 1,6393 | 0,558   | 0         |              |       | 400             |        |            |                 |      |
| ppliances          | appliances_A            |          | applianc         | 56%    | 6 -1   |          |       |        |        |       |            |            |        |      | 1,7857 | 0,558   | 0         |              |       | 430             |        | 0          |                 |      |
| ppliances          | appliances_A+           |          | applianc         | 47%    | 6 -1   |          |       |        |        |       |            |            |        |      | 2,1164 | 0,558   | 0         |              |       | 520             |        |            |                 |      |
| ppliances          | appliances_A++          |          | applianc         | 39%    | 6 -1   |          |       |        |        |       | 0 0        |            |        |      | 2,5478 | 0,558   | 0         |              |       | 550             |        |            |                 |      |
| opliances          | appliances_A+++         |          | applianc         | 32%    | 6 -1   |          |       |        |        |       | 0 0        |            |        |      | 3,125  | 0,558   | 0         |              |       | 810             |        |            |                 |      |
| irge_scale_power   | biogas_plant            |          | biogas_pl        |        |        |          |       |        |        |       |            |            |        |      |        |         | 0         |              |       |                 |        |            |                 | +    |
| arge_scale_power   | wind_plant              |          | wind_pla         |        |        |          |       |        |        |       |            |            |        |      |        |         | 0         |              |       |                 |        |            |                 |      |
| sulation           | BE_A                    |          | BE_A_pc          | 6,01%  | 6 0    |          |       |        |        |       |            | ,0029 0,0  |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| sulation           | BE_B                    |          | BE_B_pc          | 6,09%  | 6 (    |          |       |        |        |       |            | ,0029 0,0  |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_C                    |          | BE_C_pc          | 6,67%  | 6 0    |          |       |        |        |       |            | ,0029 0,04 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| sulation           | BE_D                    |          | BE_D_pc          | 6,07%  | 6 0    |          |       |        |        |       |            | ,0029 0,0  |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_E                    |          | BE_E_pc          | 7,51%  | 6 0    |          |       |        |        |       |            | ,0029 0,03 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_F                    |          | BE_F_pc          | 7,07%  | 6 0    |          |       |        |        |       |            | ,0029 0,03 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_G                    |          | BE_G_pc          | 9,29%  | 6 (    |          |       |        |        |       |            | ,0029 0,02 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_H                    |          | BE_H_pc          | 8,29%  | 6 0    |          |       |        |        |       |            | ,0029 0,03 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| isulation          | BE_I                    |          | BE_I_pc          | 12,16% | 6 0    |          |       |        |        |       |            | ,0029 0,02 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_J                    |          | BE_J_pc          | 12,39% | 6 (    |          |       |        |        |       |            | ,0029 0,02 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_NEH                  |          | BE_NEH           | 14,29% |        |          |       |        |        |       |            | ,0029 0,03 |        |      | 0      |         | 0         |              | 22410 | 115             |        | 1          |                 |      |
| sulation           | BE_KFW85                |          | BE_KFW           | 18,18% |        |          |       |        |        |       | -0,016 0   |            |        |      | 0      |         | 0         |              | 22410 | 135             |        | 1          |                 |      |
| isulation          | BE_KFW70                |          | BE_KFW           | 22,22% | 6 0    |          |       |        |        |       |            | ,0029 0,0  |        |      | 0      |         | 0         |              | 22410 | 180             |        | 1          |                 |      |
| nsulation          | BE_KFW55                |          | BE_KFW           | 28,57% | 6 0    |          |       |        |        |       |            | ,0029 0,00 |        |      | 0      |         | 0         |              | 22410 | 250             |        | 1          |                 |      |
| sulation           | BE_KFW40                | building | _                | 40,00% |        |          |       |        |        |       |            | ,0029 0,00 |        |      | 0      |         | 0         |              |       | 1,00E+10        |        | 1          |                 |      |
| nsulation          | BE_PH                   |          | BE_PH_F          | 66,67% |        | 0 0      |       |        |        |       | 0 -0,004 C | ,0029 0,00 | 114    |      | 0      |         | 0         | 1700         | 4000  | 1,00E+10<br>442 | 4.50%  | 1          |                 |      |
| ecentral_powergen  |                         |          | PV_S20_          | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         |              | 1000  |                 | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_\$35_         | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  | 442<br>442      | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_\$50_         | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  | 442             | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_W20           | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  |                 | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_W35           | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  | 442<br>442      | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_W50           | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  |                 | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_E20_          | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  | 442             | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_E35_          | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  | 442             | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_E50_          | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  | 442             | 1,50%  | 6,63       |                 |      |
| ecentral_powergen  |                         | district | PV_N20           | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700         | 1000  | 442             | 1,50%  | 6,63       |                 |      |
| lecentral_powergen | PV_N35                  | district | PV_N35<br>PV_N50 | 15%    | 0,26   |          |       |        |        |       |            |            |        |      | 0      |         | 0         | 1700<br>1700 | 1000  | 442<br>442      | 1,50%  | 6,63       |                 |      |

# **Backup: Data generation**

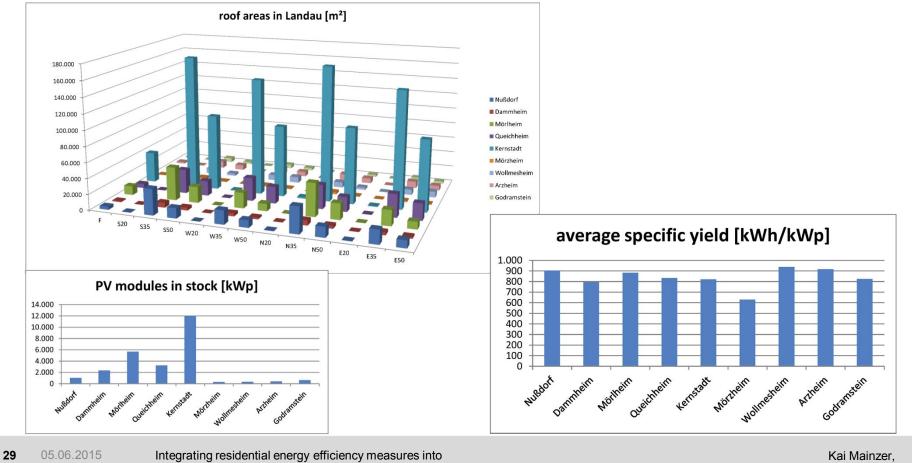


#### Buildings

- Number and sizes of each building (OpenStreetMap)
  - + distributions of building ages and types (Federal statistics office)
  - => sample of 100 buildings (building type classification, tailored to use case), each with a scale factor
- For each building in the sample, the technologies in stock and their installation year have been determined (using data for technology frequency and age distributions)
- PV potentials
  - Building footprints (OpenStreetMap) => size and azimuth
     + Roof inclination estimated as normal distributed (μ=40.5°, σ=5°)
     => calculation of roof size and orientation
  - Irradiation profiles calculated using global irradiation data (MACC-RAD) and applying algorithms for calculation of inclined irradiance profiles for different roof orientations

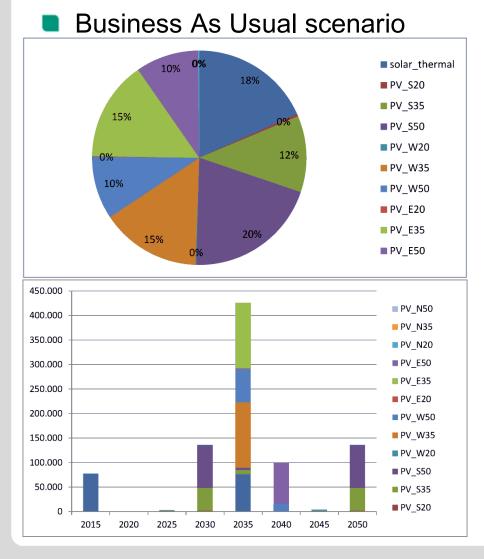
#### Demand

- Measured household/building data not available, but demand fluctuations of single buildings are important and should be considered
- Application of an activity-based electricity demand generation method [Richardson et al. 2010] => generation of demand curve for each household in each building
- Heat: yearly specific demands per building type + heating degree days + hourly distribution

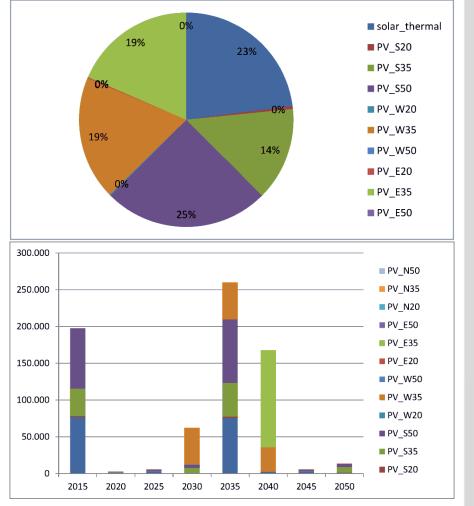

# Backup: Landau roof area analysis

optimizing urban energy system models




Chair of Energy Economics, IIP

- Based on building footprints, roof areas calculated from building orientation and statistical assumptions on roof inclinations
- Total: 1.8 km<sup>2</sup>, 9% already occupied. Mean yield: 838 kWh/kWp




# Backup: Results – PV & Solar Thermal installations





#### **Emission Reduction scenario**



**30** 05.06.2015

Integrating residential energy efficiency measures into optimizing urban energy system models

# Backup: Results – Scenario comparison



- Emission Reduction scenario vs. Business As Usual scenario:
  - Total costs: +4.88%•  $CO_2$  emissions: **Emission reductions** 40% -37.5% 20% PM<sub>10</sub> emissions: -38.7% 0% -20% CO2 -40% PM10 -60% -80% -100% Energy import: 2015 2020 2025 2030 2035 2040 2045 2050 -23.4% Specific CO<sub>2</sub>-avoidance cost: 121 €/t<sub>CO2</sub>

Integrating residential energy efficiency measures into optimizing urban energy system models

05.06.2015

31