
Urban form as a "first fuel" for low-carbon mobility in Chinese cities

Strategies for energy and carbon saving in the transport sector

eceee 2015 Summer Study Panel 4. Mobility, transport, and smart and sustainable cities. Paper no. 4-064-15 **Stephanie Ohshita, PhD** Lawrence Berkeley National Laboratory and University of San Francisco SBOhshita@lbl.gov / sbohshita@usfca.edu

Overview

- One Case Study: City of Jinan, Shandong, P.R. China
- Two main questions:
 - (1) influence of urban form on low-carbon mobility in China?
 - (2) successful policy strategies and implications for China?
- Three tools for analyzing low-carbon mobility:
 - BEST Cities, ELITE Cities, Urban RAM
- Policy Strategies and Infrastructure Choices
 - Integrated Transport Planning, with Mixed-Use Urban Form
 - Public Transit Infrastructure, with Non-Motorized Transport
 - Vehicle License Policies, Clean Vehicle Policies
- Conclusions: People, Accessibility, Clusters, Connectivity

Chinese Urban Context: Jinan, Shandong

- Jinan population: 6.1 million
- Transport 10% urban energy, rising 5+% annually
- Road-dominated, increasing car ownership & trips
- Bus-dominated transit
- BRT since 2008
- Metro under construction
- Revival of bicycling

[Source: http://www.chinastc.org/en/project/48/403]

Jinan Metro Plans

[Source: Jinan Urban Transport Planning 2015-2019.]

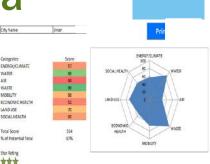
3 Tools for Low-Carbon Cities in China (and elsewhere)

BEST Cities

 Benchmarking and Energy-Saving Tool for Low-Carbon Cities

3 components:

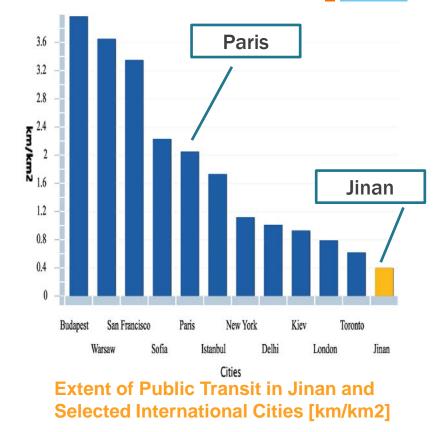
- (1) Inventory & Benchmarking
- (2) Sector Prioritization
- (3) Policy Analysis
- 9 sectors: industry, buildings, transportation, power & heat, etc.
- 33 Indicators: city-wide and sector-specific, for international external benchmarking
- 72 Policies: evaluate savings potential, city capabilities and priority policies


	>\$1 million	\$100,000 - \$1 million	<\$100,000
>200,000	high	very high	very high
100,000 - 200,000	med	high	high
<100,000	low	med	med

3 Tools for Low-Carbon Cities in China (and elsewhere)

Urban RAM

- Urban Rapid Assessment Model
- Life-cycle view: operational and embodied energy and carbon
- Attributes electricity and industrial energy to urban consumers
- Findings show high contribution of food and residential goods to total urban embodied energy.
- Transportation operational and embodied energy ~10% and growing.


ELITE Cities

- Eco and Low-carbon Indicator Tool for Evaluating Cities (ELITE Cities)
- Scores 33 key indicators representing 8 categories to compare and rank cities in China
- Jinan scored 70/100 in Land Use; 66/100 in Mobility, and only 44/100 in Air Quality
- Limited green space [10/50 m2/capita], low accessibility to transit [50/90 %} and low public transit use [30/60 %} are all areas for improvement.

Urban Form & Transport Indicators in BEST Cities (aggregate view for benchmarking across cities)

- Transportation Energy per capita [tonnes coal equivalent (tce)/person]
- Extent of Public Transit [km/km2], length of bus and rail service across urban area
- Mode Share of Non-motorized Transport [%], share of trips by walking and bicycling
- Mode Share of Public Transit [%], share of trips by bus and rail
- Urban Green Space per capita [m2/person]
- Population Density [people/m2]

Transportation Policies Recommended for Jinan by the BEST Cities Tool

Policy	Speed of Implementation	Carbon Savings Potential (tCO ₂ e)	First Cost to Government (RMB)		
Very High Priority					
Public Transit Infrastructure: Light Rail, BRT, Buses	> 3 Years	>2.5 million	5 million – 50 million		
Vehicle CO ₂ Emission Standards	1–3 Years	>2.5 million	<5 million		
Vehicle Fuel Economy Standards	1–3 Years	>2.5 million	5 million – 50 million		
High Priority					
Integrated Transportation Planning	> 3 Years	500,000 - 2.5 million	<5 million		
Mixed-Use Urban Form	> 3 Years	500,000 - 2.5 million	<5 million		
Congestion Charges and Road Pricing	1–3 Years	500,000 - 2.5 million	<5 million		
Parking Fees and Measures	1–3 Years	500.000 - 2.5 million	<5 million		
Vehicle License Policies	<1 Year	500,000 - 2.5 million	<5 million		
Clean Vehicle Programs	1–3 Years	500,000 - 2.5 million	5 million – 50 million		

Urban form influences 3 key variables affecting urban transport energy and carbon

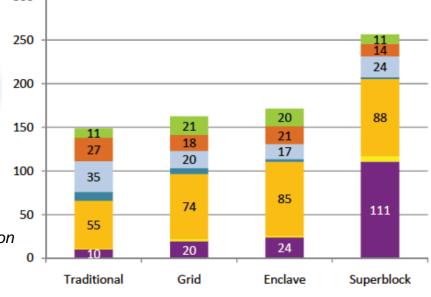
Population density and distribution; clusters		Land-use mix; mixed-use zoning	
	Access to pathways for walking and biking	Quality of access: trees, safety, covered bus stops, nearby amenities	
Access to public transit		Distance from destinations: proximity, isolation	
	Ease of use for each transport mode: fare payment, speed, frequency	Extent of each transport mode	

Connectivity of transport modes; street and intersection density

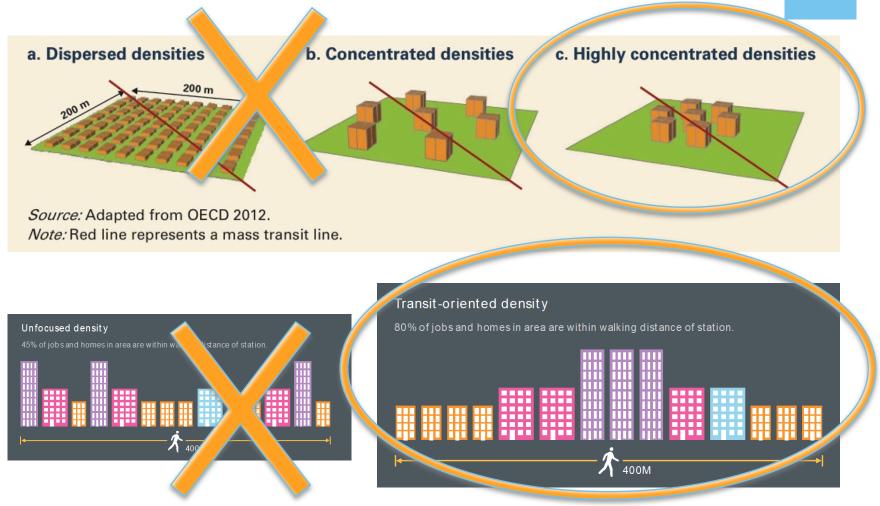
(1) vehicle kilometres travelled (VKT),

(2) mode share, and

(3) energy and carbon intensity of each transport mode.


Jinan Urban Form: *Superblock* 4x VKT vs. *Traditional*, *Grid*, or *Enclave* Forms

Neighborhood Tradogies 100% 90% 25% 27% 80% 41% 42% 8% 70% 8% 22% 60% 13% 50% 15% 23% 17% 8% 40% 300 8% 30% 28% 22% 20% 21% 33% 10% 8% 8% 7% 0% Superblock Traditional Grid Enclave ebike walk bus car motorcycle taxi bike

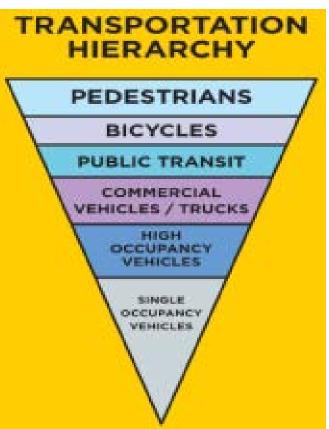

Average Household Weekly Travel Mode Share across the Four

Yang, J. 2010. Does Energy Follow Urban Form? An Examination of Neighborhoods and Transport Energy Use in Jinan, China. Master's Thesis, Massachusetts Institute of Technology. May. (Graphics reproduced by Calthorpe Associates 2010.)

Average Household Weekly Travel Distance (Km) across the Four Neighborhood Typologies.

Clustered Distribution is crucial, not only aggregate (average) density

[Source: Suzuki, Cervero, and Iuchi, World Bank, 2013.]


Human-scale details matter, not only technology, infrastructure, business

+ Conclusions

- Though Transportation is typically 10% of energy and carbon in Chinese cities, the share is growing rapidly.
- High Priority Policy Strategies & Infrastructure:
 - Integrated Transport Planning, with Mixed-Use Urban Form
 - Public Transit Infrastructure, with Non-Motorized Transport
 - Vehicle License Policies, Clean Vehicle Policies
- Emphasize Mobility for People, Accessibility, Clusters, Connectivity

Discussion ~ Thanks!

Many thanks to: eceee, Shandong Academy of Sciences and the City of Jinan, Lawrence Berkeley National Laboratory, and the University of San Francisco. How to prioritize and promote mixed-use urban form and nonmotorized transport?

[These are "at-the-source" strategies for large-scale, enduring benefits – not "shiny" techno solutions.]

- How to leverage funding, public understanding, business support for equitable low-carbon mobility?
- How to integrate low-carbon transport and land-use decisions?