BENCHMARKING THE EUROPEAN REFERENCE Scenario 2016

AN ALTERNATIVE BOTTOM-UP ANALYSIS OF LONG-TERM ENERGY CONSUMPTION IN EUROPE

Andrea Herbst, Rainer Elsland, Tobias Fleiter, Matthias Rehfeldt Fraunhofer ISI Ulrich Reiter TEP Energy

> eceee Summer Study on energy efficiency 29 May – 3 June Hyères, France

Introduction Ι.

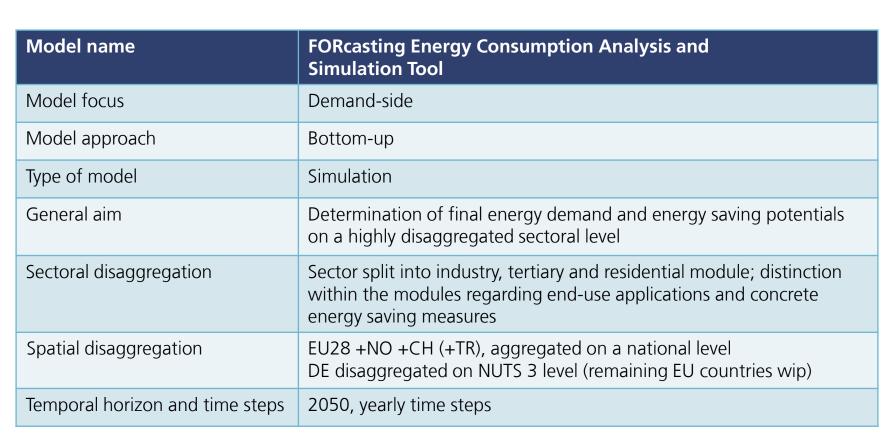
- Methodology Π.
- Framework assumptions & results Ш.
- Conclusions IV.

INTRODUCTION Motivation and Objective

Motivation:

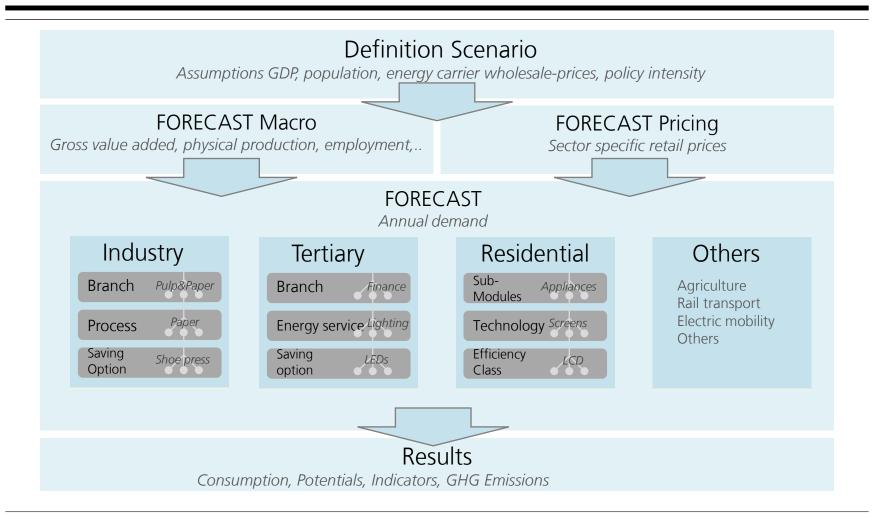
- **Long-term scenarios** of future energy demand are a major prerequisite when **planning** future energy systems and policy intervention
- Prominent example: EU Reference Scenario 2016
- **High relevance** for political discussion on European level

Objective:


- Apply bottom-up model **FORECAST**
 - Using framework data published by the European Commission
 - **Compare** projections of energy demand for the EU27 until 2035 (at publicly available degree of detail)
 - Critically **reflect** upon the results
 - Better **understand** driving forces of energy demand

- Introduction Ι.
- Methodology II.
- Framework assumptions & results Ш.
- Conclusions IV.

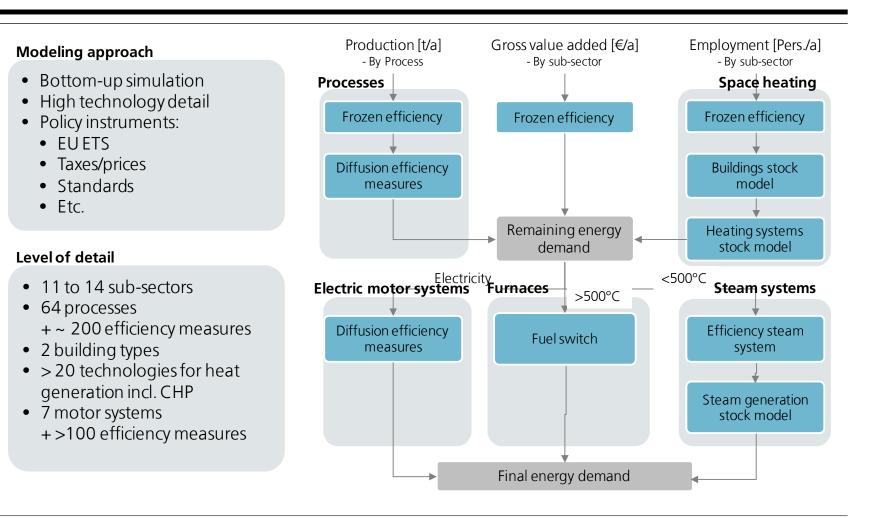
METHODOLOGY General model characteristics


 $R \vdash ()$

and Simulation Tool

FORecasting Energy Consumption Analysis

METHODOLOGY *FORECAST*


METHODOLOGY *Main inputs/outputs*

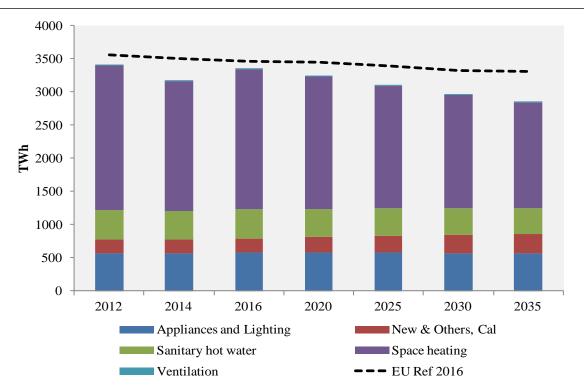
FORECAST FORecasting Energy Consumption Analysis and Simulation Tool

Input/output data			
Main input data	Tertiary	Residential	Industry
	Main drivers		
	 No. of employees by subsector Floor area per employee by sub-sector [m²] 	 No. of households Building surface by type of building [m2] 	 Physical production by process [t/a] Value added by sub-sector [Meuro/a]
	Energy carrier prices		
	Technology data		
	 Technology driver Installed power Full load hours Saving potentials Lifetime Diffussion Insulation levels Heating system efficiency & shares 	 Market stock Lifetime Operation power/hours Standby power/hours Insulation levels Heating system efficiency Market stock Performance factor 	 Specific energy consumption Saving potentials Lifetime Diffusion Insulation levels Heating system efficiency & shares
Main output data	 Fuel and electricity demand (by process/technology/appliance, energy carrier, etc.) Energy savings (CO₂ abatement, energy saving costs, CO₂ abatement costs) 		

METHODOLOGY FORECAST Industry

FORECAST FORecasting Energy Consumption Analysis and Simulation Tool

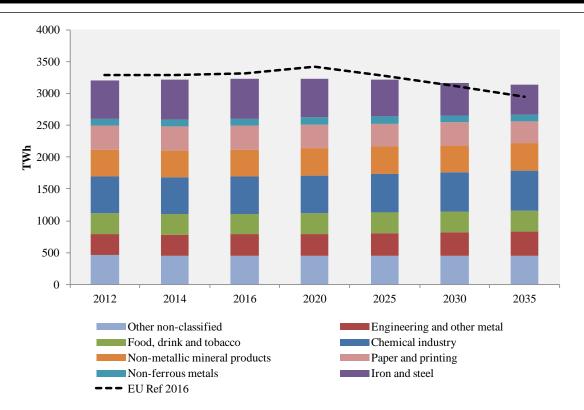
- Introduction Ι.
- Methodology Π.
- Framework assumptions & results Ш.
- Conclusions IV.


FRAMEWORK ASSUMPTIONS

- Applying FORECAST using framework data published by the European Commission for the European Reference Scenario 2016
- EU Ref Scenario 2016 includes policies and measures adopted by 2014* (EU level & member states) -> Current Policy Scenario
- Main drivers taken from EU Ref Scenario 2016:
 - GDP
 - Population
 - Household size (number of households)
 - GVA industry (by sub-sector)
 - GVA tertiary
- Translated into physical drivers of energy demand (e.g. sqm per employees, industrial production, building surface by type of building)

^{*)} including amendments to 3 Directives agreed in the beginning of 2015

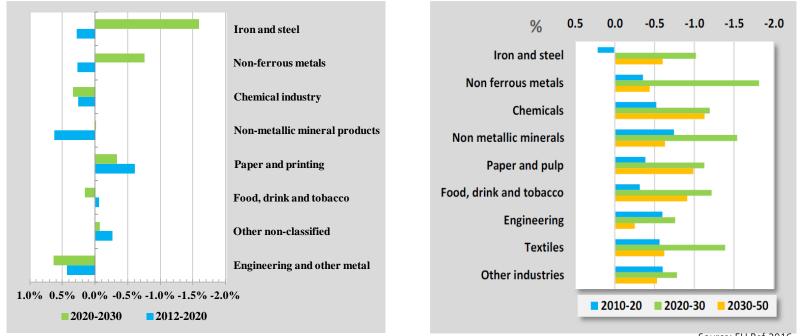
RESULTS EU27 Final energy demand - Residential*


- More ambitious decreasing trend between 2012 and 2035 (-0.8% p.a.; from 3405 to 2852 TWh) than in the EU Ref Scenario 2016 (-0.3% p.a.)
- Decrease in heating, hot water generation caused by improved thermal efficiency (driven by EPBD) and replacement of inefficient heating systems

*) Results of the European Reference Scenario 2016 were available in 5 years steps. Values in between these 5 year steps have been interpolated.

Source: own calculation and EU Ref 2016 (Capros et al. 2016)

RESULTS EU27 Final energy demand – Industry*


- Slightly decreasing trend between 2012 and 2035 (-0.1% p.a.; from 3205 to 3134 TWh)
- Overall assumptions on energy intensity reductions in industry are more ambitious in the EU Ref 2016 - particularly between the years 2020 and 2030

*) Results of the European Reference Scenario 2016 were available in 5 years steps. Values in between these 5 year steps have been interpolated.

© Fraunhofer ISI Seite 12 Source: own calculation and EU Ref 2016 (Capros et al. 2016)

RESULTS Average annual change of industrial FED

Source: FU Ref 2016 (Capros et al. 2016)

- Less ambitious increase of energy efficiency based on current available technologies in the primary industry sector
- Innovative breakthrough technologies not expected to enter the European market in large scale **before 2030**

- Introduction Ι.
- Methodology Π.
- Framework assumptions & results Ш.
- **IV.** Conclusions

CONCLUSIONS

- I. Every model is an **abstraction of reality:** dependent on data availability, subject to uncertainties and assumptions
- II. Scenario and model **comparisons** are an important method **to improve** the **robustness** of energy models
- III. Suggestions for **future research**:
 - Scenario design and model runs aiming for comparison (e.g. model experiment via targeted sensitivity analysis)
 - Increased transparency of assumptions and input data to improve comparison (e.g. main drivers like industrial production)
 - More standardisation of energy demand modelling to improve overall comparability of models (e.g. data sources and simulation routines)

Increase reliability and acceptance of model and scenario results to improve basis for political decision making

AN ALTERNATIVE BOTTOM-UP ANALYSIS OF LONG-TERM ENERGY CONSUMPTION IN EUROPE

Many thanks for your attention!

http://www.forecast-model.eu

Andrea Herbst Competence Center Energy Technology and Energy Systems Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Straße 48, 76139 Karlsruhe, Germany Tel.: +49 (0) 721 6809 -439

E-Mail: andrea.herbst@isi.fraunhofer.de

LITERATURE

Capros P. et al. (2016) EU Reference Scenario 2016, Energy, transport and GHG emissions Trends to 2050. Luxembourg: Publications Office of the European Union. https://ec.europa.eu/energy/en/data-analysis/energy-modelling

Elsland, Rainer; Bradke, Harald; Wietschel, Martin (2014a): A European Impact Assessment of the Eco-design Requirements for Heating Systems – What Kind of Savings can we Expect? In Energy Procedia 62, pp. 236–245. DOI: 10.1016/j.egypro.2014.12.385.

Elsland, Rainer; Schlomann, Barbara; Eichhammer, W. (Eds.) (2013): Is enough electricity being saved? Impact of energy efficiency policies addressing electrical household appliances in Germany until 2030: eceee summer study 2013, June 3–8, Presqu'ile de Giens.

Elsland, R. (2016): Long-term energy demand in the German residential sector – Development of an integrated modeling concept to capture technological myopia. Dissertation, Karlsruhe Institute for Technology. Baden-Baden, NOMOS-Verlag.

Fleiter, Tobias; Fehrenbach, Daniel; Worrell, Ernst; Eichhammer, Wolfgang (2012): Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials. In Energy 40 (1), pp. 84–99. Available online at http://www.sciencedirect.com/science/article/ pii/S036054421200120X.

Fleiter, Tobias; Hirzel, Simon; Jakob, Martin; Barth, Jan; Quandt, Laura; Reitze, Felix.; Toro, Felipe (Eds.) (2010): Electricity demand in the European service sector: a detailed bottom-up estimate by sector and by end-use. Frankfurt (Konferenzband der IEECB 13-14.04.2010).

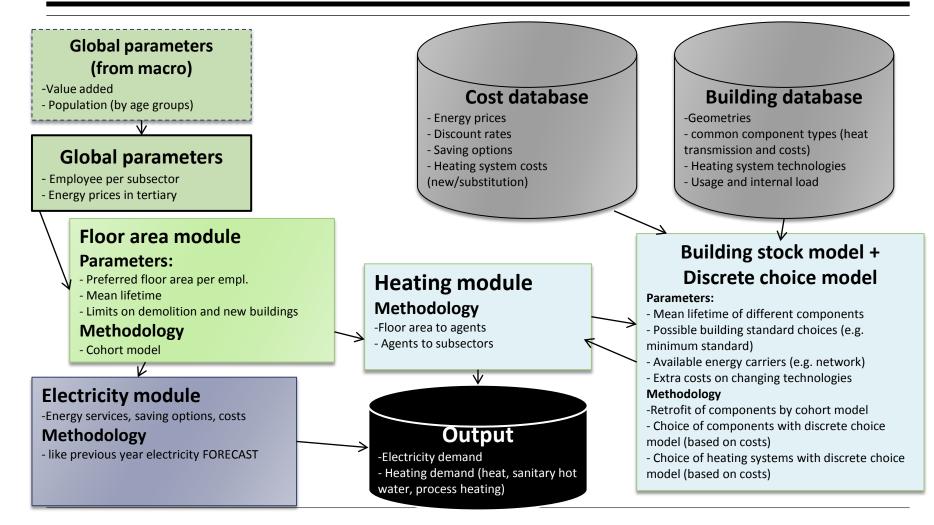
Fleiter, T.; Schlomann, B.; Eichhammer, W. (eds.) (2013): Energieverbrauch und CO2 Emissionen industrieller Prozesstechniken - Einsparpotenziale, Hemmnisse und Instrumente. Stuttgart: Fraunhofer Verlag.

Fleiter, T.; Worrell, E.; Eichhammer, W. (2011b): Barriers to energy efficiency in industrial bottom-up energy demand models--A review. Renewable and Sustainable Energy Reviews, 15 (6), pp. 3099-3111.

Herbst, Andrea; Fleiter, Tobias; Jochem, Eberhard (2016): <u>Einfluss von Materialstrategieverbesserungen auf die industrielle Energienachfrage</u>. 14. Symposium Energieinnovation, 10.-12.02.2016 Graz/Austria

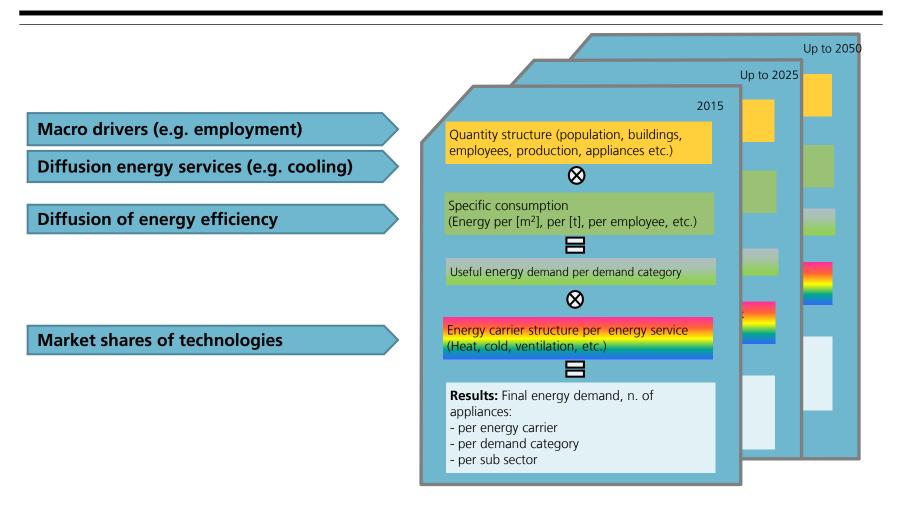
Herbst, Andrea; Fleiter, Tobias; Jochem, Eberhard (2014): <u>Modelling recycling and material efficiency trends in the European steel industry</u>. In: European Council for an Energy-Efficient Economy -ECEEE-, Paris: eceee 2014 Industrial Summer Study on Energy Efficiency. Proceedings: Retool for a competitive and sustainable industry; 2-5 June, Papendal, Arnhem, the Netherlands. Stockholm: ECEEE, 2014, S. 201-212

Jakob, Martin; Catenazzi, Giacomo; Fleiter, Tobias (Eds.) (2013): Ex-ante estimation of the EU Ecodesign Directive's impact on the long-term electricity demand of the tertiary sector: eceee summer study 2013, June 3–8, Presqu'ile de Giens, France.


Jakob, Martin; Fleiter, Tobias; Catenazzi, Giacomo; Hirzel, Simon; Reitze, Felix.; Toro, Felipe (Eds.) (2012): The impact of policy measures on the electricity demand of the tertiary sector of the European Union: An analysis with the bottom-up model FORECAST. Frankfurt (Konferenzband der IEECB 18-19.04.2012).

FORECAST *Methodology:* example tertiary

FORECAST FORecasting Energy Consumption Analysis


and Simulation Tool

FORECAST Methodology: example tertiary

FORECAST FORecasting Energy Consumption Analysis and Simulation Tool

