Balancing variable supply with flexible demand ECEEE Summer Study, 1 June 2017 Dina Subkhankulova

Prof Mark Barrett Dr Ed Manley

Dr Artem Baklanov Dr David McCollum

Presentation overview

- 1) Motivation for research
- 2) Contributions
- 3) Model description
- 4) Results & discussion
- 5) Conclusions and further research

1. Motivation for research

The UK electricity system is changing:

Supply side	Demand-side
 Dispatchable generators replaced by renewables System storage Distributed electricity generation 	 Small scale renewables Consumer storage (electric, thermal) New technology (electric vehicles, heat pumps)
	 Smart consumption devices

Unpredictable + Unpredictable = Difficult to balance the grid

1. Motivation for research

Solution?

Demand side management (DSM) Coordinate consumers to use electricity when renewable energy is abundant

Where are the gaps?

DSM has been considered in idealistic settings, i.e. identical consumers, isolated system, no market.

1. Motivation for research

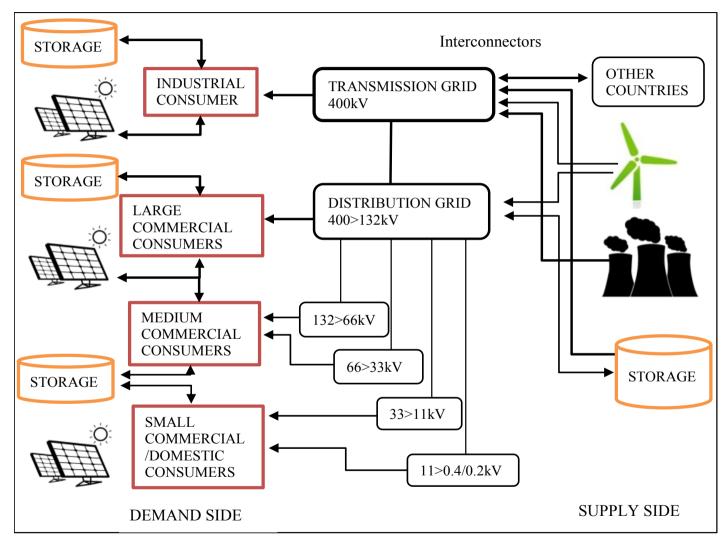


Figure 1: Graphical representation of the electricity flow in the GB electricity grid.

2. Our contributions

Part I – introduce different consumers and DSM regimes

- 1. What is better **distributed** or **centralised** coordination and for whom?
- 2. What is the **value** of storage in the future UK electricity system?

Part II – introduce competition for utilities

- 1. How could DSM influence future **business models** of electricity utilities?
- 2. Can DSM be **disruptive**? Can utilities use it to gain a competitive advantage while compromising global sustainability goals?

3. Part I – general framework

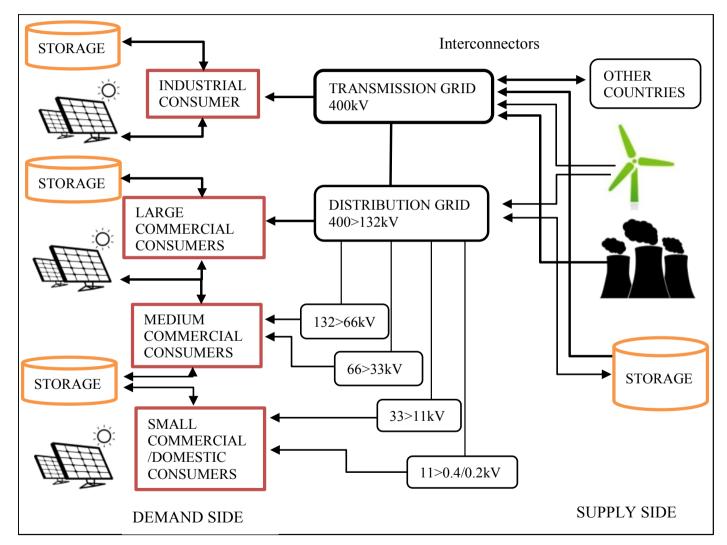
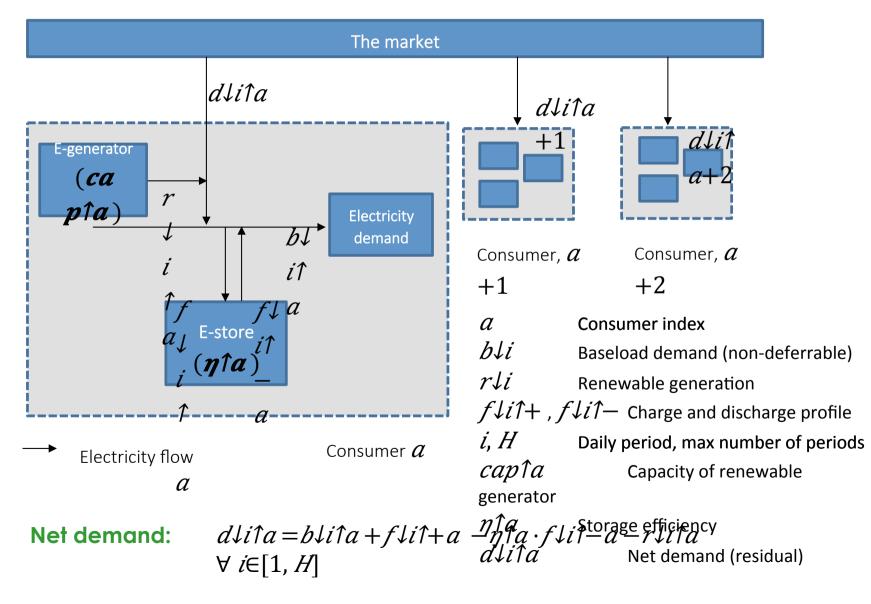
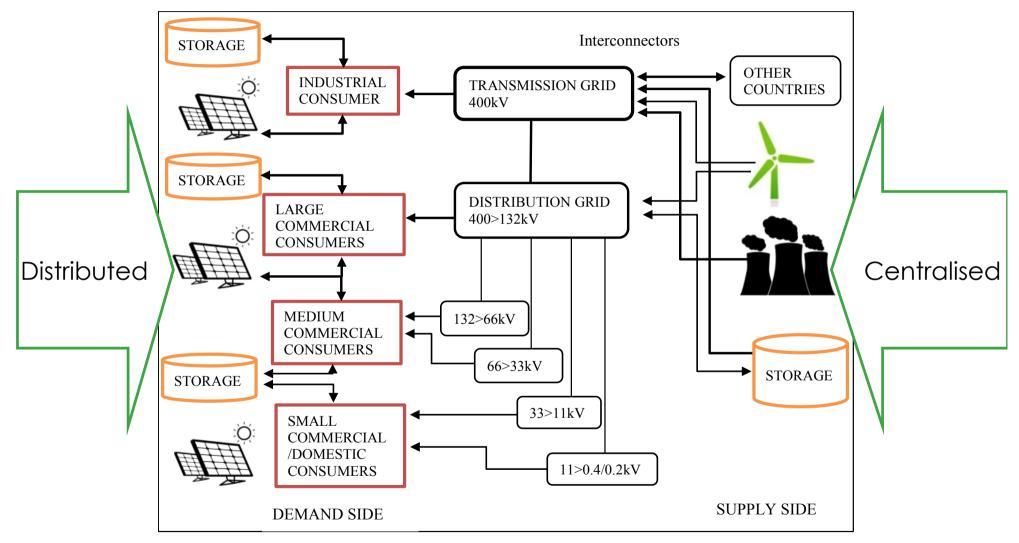



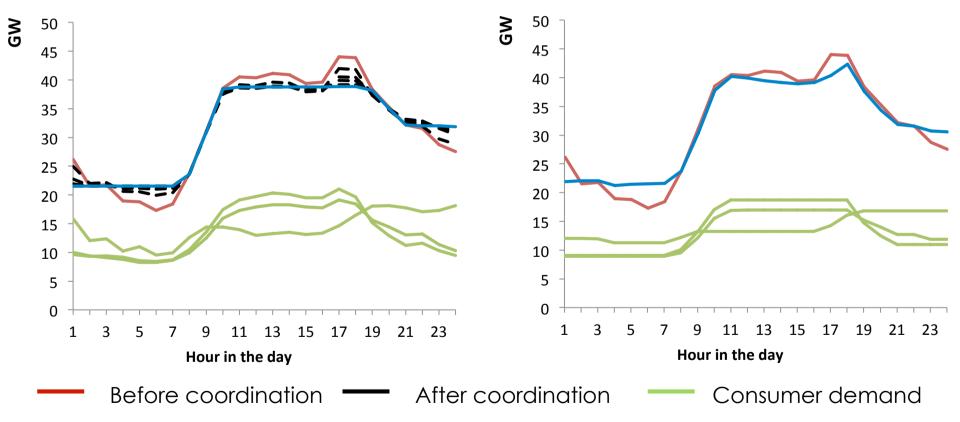
Figure 1: Graphical representation of the electricity flow in the GB electricity grid.

3. Part I – consumer

Figure 2: Graphical representation of consumer resources.

3. Part I – DSM regimes



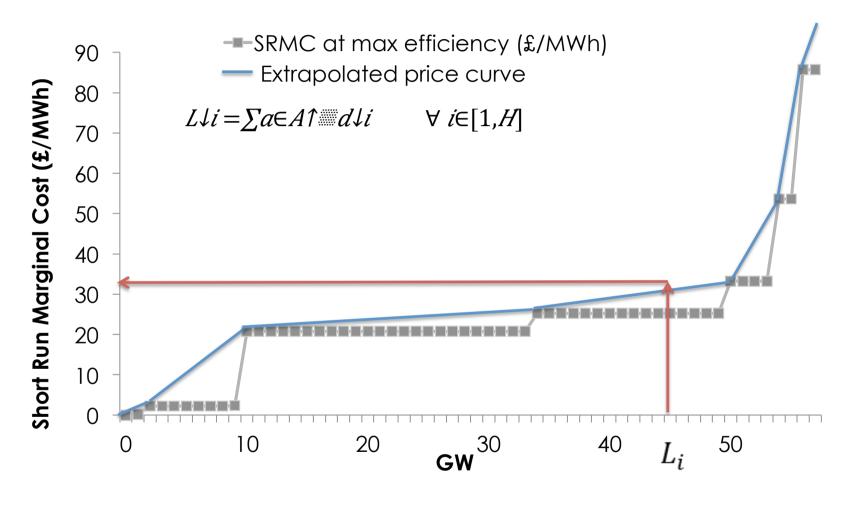

Figure 1: Graphical representation of the electricity flow in the GB electricity grid.

3. Part I – DSM regimes

Centralised with demand flattening (CDF) – the aggregator (supplier or system operator) negotiates the demand profile with a set of consumers

Distributed with demand flattening (DDF)

 – consumers smooth own residual demand profiles

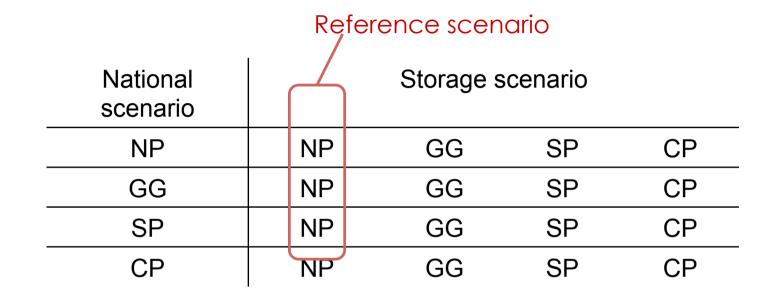


CDF by system operator

DDF by consumer

Figure 3: Comparison of DSM regimes. Algorithm adapted from (Gan, L., Wierman, A., Topcu, U., Chen, N., & Low, S. H. , 2013)

3. Part I – The market

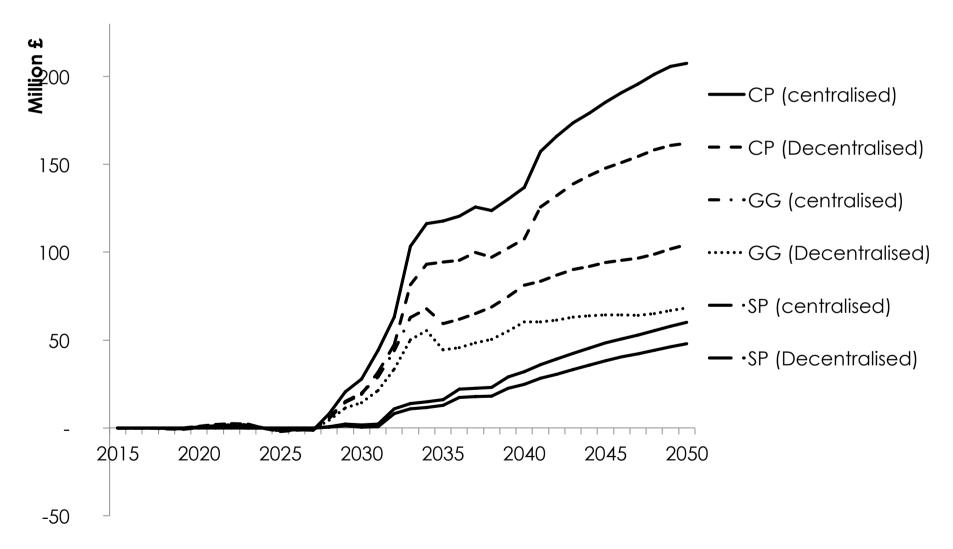

 $p\downarrow i$ ($L\downarrow i$) = average cost of MWh purchased in the market $\pi \downarrow i \uparrow a = p\downarrow i + uplift \uparrow a$ = Retail price per MWh

3. Part I – National scenarios

 Consumer Power (CP) Market-driven world High levels of prosperity High investment and focus on the desires of consumers 	 Gone Green(GG) Ambitious policy interventions and innovation Focus on long-term environmental goals High levels of prosperity
 No progressions (NP)-base case Business as usual Focus on affordability above green ambition Little innovation 	 Slow progression (SP) Limiting economic conditions Limited choices for residential consumers and businesses Slow pace transitions

Source: http://fes.nationalgrid.com/

4. Part I – Simulation scenarios



For each national scenario we calculate the savings arising from integrating storage relative to NP storage scenario

 $Savings = d\downarrow i\uparrow GG \times \pi \downarrow i\uparrow GG - d\downarrow i\uparrow NP \times \pi \downarrow i\uparrow NP \qquad \forall i \in [1, H]$

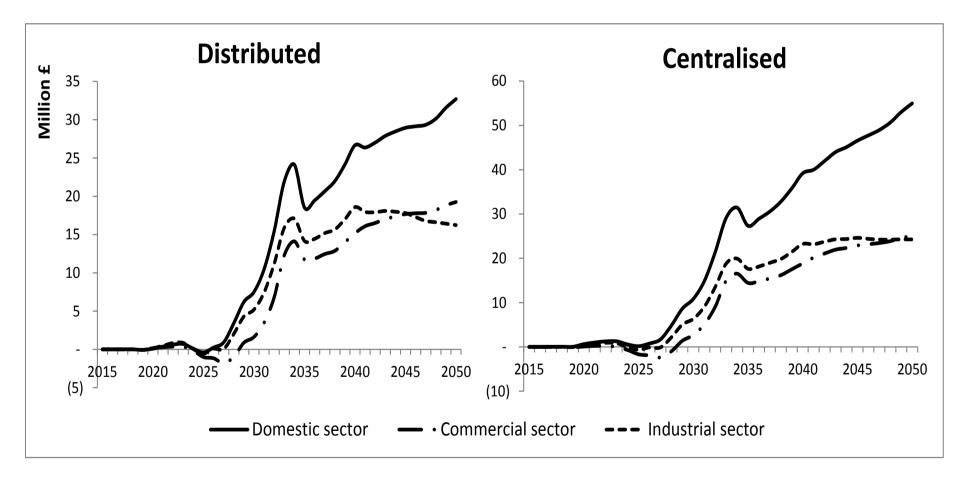

4. Part I – Results

Figure 4: Annual savings by the whole system under different storage scenarios.

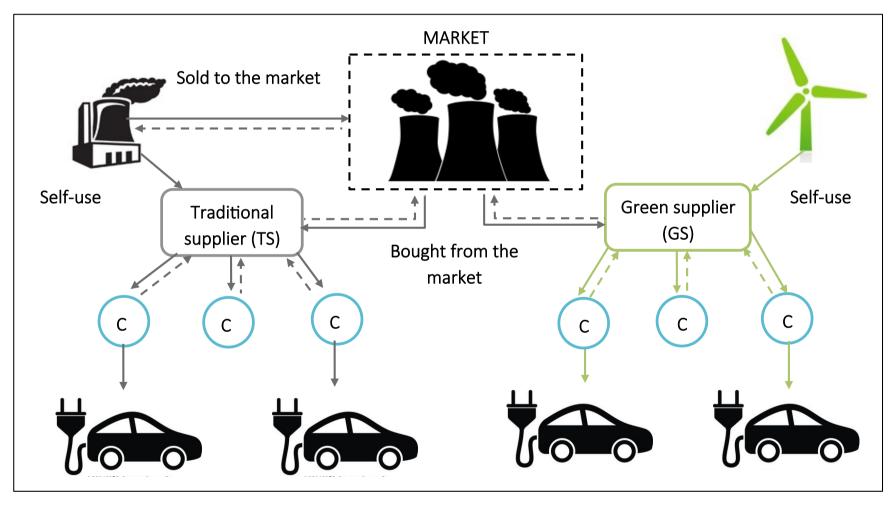
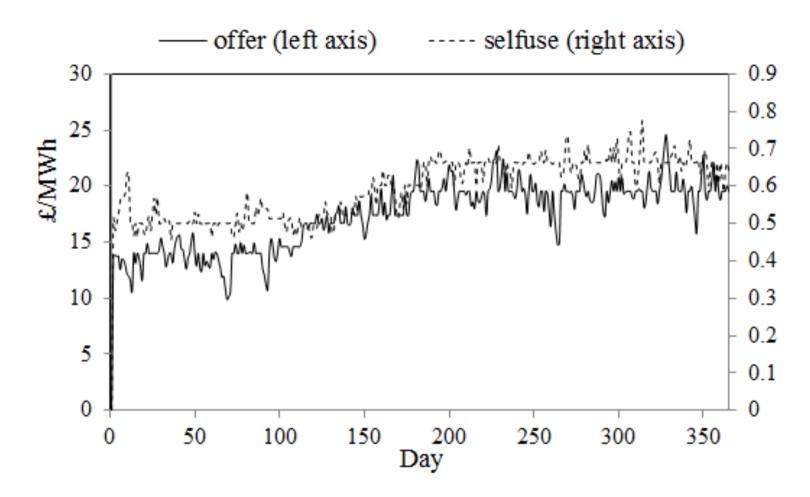

4. Part I – Results

Figure 5: Annual savings under Gone Green scenarios grouped by coordination regime.



3. Part II – General framework

Figure 6: Graphical representation of interactions between market players

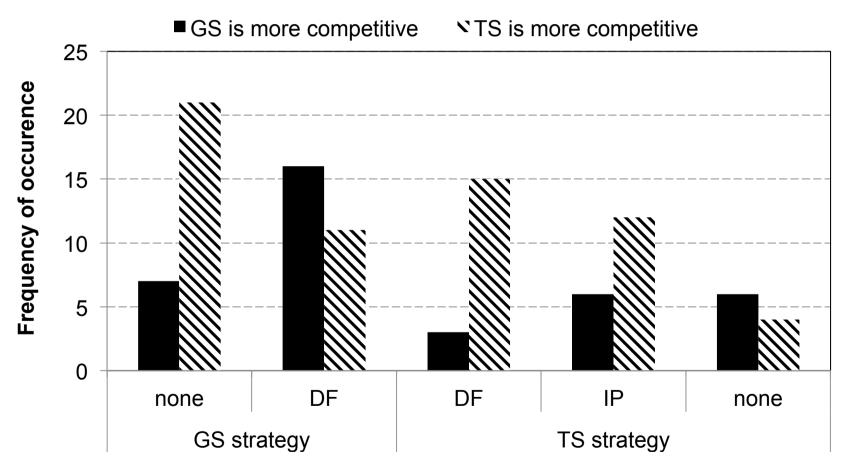
3. Part II – Suppliers learning

Figure 7: Time series of traditional supplier adjusting offer and self-reserve parameter.

3. Part II – Supplier DSM regimes

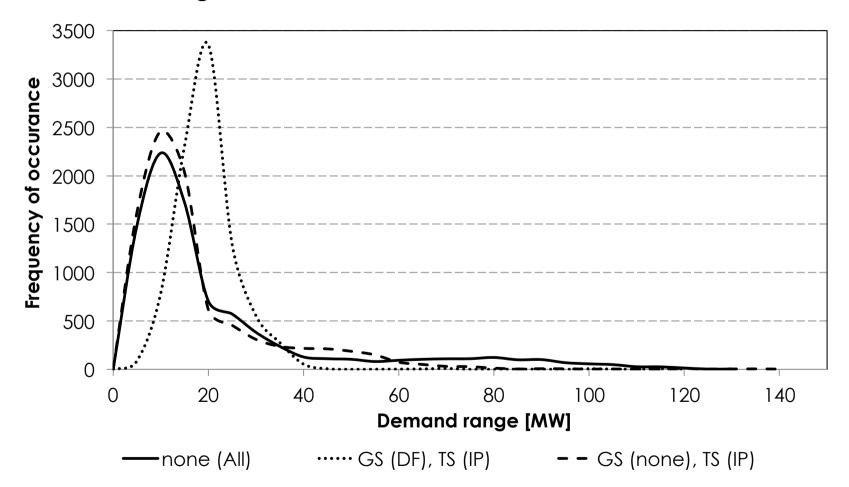
UCL

Centralised demand flattening (CDF) Centralised peak increasing(CPI) Demand [MVV] Hour Hour


--- Demand before coordination Demand after iterations 1-10 - Demand after coordination

Assume that the green supplier does not deploy CPI

4. Part II – Results


Figure 8: Residual system demand distribution under different supplier coordination regimes.

Key: none=no coordination DF=demand flattening IP=increasing peak

4. Part II – Results

Figure 9: Residual system demand distribution under different supplier coordination regimes.

Key: none=no coordination DF=demand flattening IP=increasing peak

5. Conclusions

- Consumers benefit differently from storage depending on DSM regime -> Should that be regulated? How can we make it fair?
- DSM used as a tool to compete can lead to higher demand peaks
 Should DSM activities between suppliers and consumers be disclosed?

Further work...

- Introducing other consumer resources: heat pumps, thermal stores, electric vehicles, resistance heating
- Merging part I and part II into a single model
- Allowing consumers to switch suppliers
- Introducing more advanced learning strategy to suppliers

Thank you dina.subkhankulova.13@ucl.ac.uk Questions?

Additional slides

Assumptions

- 1. Storage is equally distributed between different types of consumers
- 2. Consumers of the same type are identical => aggregated
- 3. Ancillary services are excluded from the market
- 4. Electricity costs are modelled at short run marginal costs (SRMC)
- 5. Power trading is not modelled
- 6. The merit order is constructed based on SRMC of generation technology
- 7. The model is deterministic
- 8. The transportation sector is not modelled
- 9. Pump storage is operated last after consumer coordination
- 10. Suppliers have an equal number of consumers
- 11. GS does not sell electricity in the market

Storage constraints

C1: Maximum and minimum power constraints

 $\begin{array}{l} 0 \leq f \downarrow i \uparrow a + \leq f \downarrow max \uparrow a , 0 \leq f \downarrow i \uparrow a - \leq f \downarrow min \uparrow a , \forall i \in [1, H], \\ \text{C2: Storage efficiency constraint} \\ \underline{\sum} i \in H \uparrow \blacksquare f \downarrow i \uparrow a - = \eta \uparrow a \underline{\sum} i \in H \uparrow \blacksquare f \downarrow i \uparrow a + , \\ \text{C3: Energy that can be stored or used at a time slot} \\ f \downarrow i \uparrow a - \leq \underline{\sum} j = 1 \uparrow i - 1 \blacksquare (\eta \uparrow a f \downarrow j \uparrow a + -f \downarrow j \uparrow a -), \forall i \in [1, H], \\ f \downarrow i \uparrow a + \leq e \uparrow a - (\underline{\sum} j = 1 \uparrow i - 1 \blacksquare \eta \uparrow a f \downarrow j \uparrow a + -f \downarrow j \uparrow a -), \forall i \in [1, H], \\ \text{C4: no-reselling allowed} \\ f \downarrow i \uparrow a - \leq d \downarrow i \uparrow a, \forall i \in [1, H]. \\ \text{Where,} \\ d \downarrow i \uparrow a \quad - \text{ total electricity demand of consumer } a \text{ in daily period } i \text{ [MW]}, \end{array}$

- i, j period of daily simulation,
- H total number of periods in a daily simulation

Storage constraints

For an electric vehicle we have an additional constraint:

C5: the time constraints for charging

 $\sum i = t \downarrow 1 \quad \uparrow t \downarrow 2 \quad i \uparrow i \uparrow a = (SOC \downarrow 2 - SOC \downarrow 1) \cdot e \uparrow a.$

Where,

 $f\downarrow i\uparrow a = \eta\uparrow a f\downarrow i\uparrow a + -f\downarrow i\uparrow a - -is$ the net charge of the battery in time period *i* [MWh]

 $t \downarrow 1$, $t \downarrow 2$ – start and finish time of charging (specified by the consumer),

SOC1, SOC12 – initial and final states of charge of the battery (as specified by consumer).

Centralised coordination algorithm

Input: The aggregator known the base load, $b \downarrow i$ and the number N of consumers. Each consumer $a \in \{1, ..., N\}$ knows its flexible demand and constraints. The utility sets K – the number of iterations.

Output: Flexible load schedule $f \uparrow a = f \downarrow i \uparrow a + -f \downarrow i \uparrow a - \forall i \in [1, H]$

1) Set k=0 and initialise the flexible load schedule as

 $f\downarrow i\uparrow\uparrow a$ (0)=0, $\forall i\in [1, H], a\in A$

2) The aggregator calculates the average aggregate load per consumer

 $g \downarrow i(k) = \sum_{i=1}^{n} 1 \uparrow N = d \downarrow i \uparrow a /N \quad i \in [1, H],$

Where,

 $d\downarrow i\uparrow a = b\downarrow i\uparrow a + f\downarrow i\uparrow a(k) - f\downarrow i\uparrow a(k)$

and sends the signal $g \downarrow i(k)$ to all consumers.

3) Each consumer solves the following optimisation problem for $f\downarrow\uparrow a+$, $f\downarrow\uparrow a-$:

 $\min \sum_{i=1}^{i=1} fH = g \downarrow_i(k) d \downarrow_i \uparrow_a + 1/2 \quad (d \downarrow_i \uparrow_a - d \downarrow_i \uparrow_a) f2 \qquad \text{S.T.C.}$ Source: http:// Set $f \downarrow_i \uparrow_a + (k) = f \downarrow_i \uparrow_a + \text{ and } f \downarrow_i \uparrow_a + (k) = f \downarrow_i \uparrow_a + \frac{\text{users.cms.caltech.edu/~adamw/}}{\text{papers/eEnergy2013.pdf}}$ and report new demand profile to utility, $d \downarrow_i \uparrow_a$

4) Set k=k+1. If k<K as to step 2).

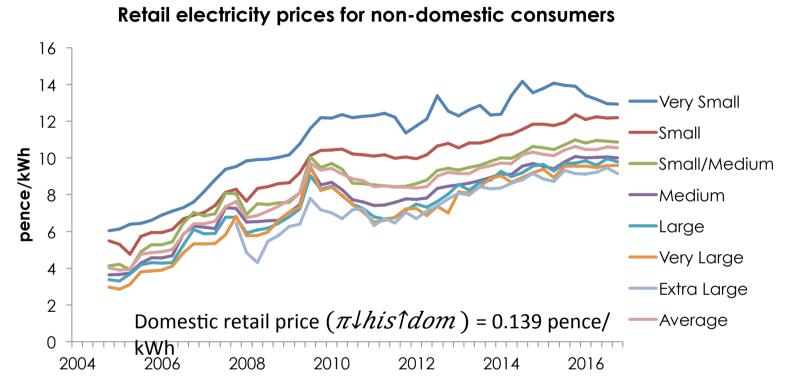
Individual optimisation with storage

Objective of coordination: balance demand with renewable supply, i.e.

Objective function: $\min(1/H\sum_{i=1}^{T} d\downarrow_{i} - 1/H\sum_{\tau=1}^{T} d\downarrow_{\tau})$

Where, $d\downarrow i = b\downarrow i - r\downarrow i + f\downarrow i\uparrow + -f\downarrow i\uparrow -$

- *bi* Baseload demand
- $r\downarrow i$ Renewable generation


 $f\downarrow i\uparrow +$, $f\downarrow i\uparrow -$ Charge and discharge

profile

- *i*, τ Daily period
- *H* Total number of period in a day

Subject to storage constraints

Calibrating retail prices

Source: Department of energy and climate change (DECC, 2016)

 $\sum i = 1 \uparrow T = \pi \downarrow i \uparrow a \times d \downarrow i \uparrow a / \sum i = 1 \uparrow T = d \downarrow i \uparrow a = \pi \downarrow h i s \uparrow a$ uplift is calibrated a

Cost of generating electricity

The market consists of electricity generators stacked according their short run marginal cost (SRMC), i.e.

$p\downarrow SRMC\uparrow S = c\downarrow varO\&M\uparrow S + p\downarrow fuel\uparrow S(t)/\eta\uparrow j + \sigma\downarrow C\uparrow S \times p\downarrow C$ Where,

 $c \downarrow varO \& M \uparrow s$ variable operational and maintenance cost for a generator of type $s [\pounds/M W h]$,

plfuel1s price of fuel used by an electricity generator of type s [£/MWh],

 $\sigma \downarrow C \uparrow S$ the emission factor for generator of type s [g CO₂eq/MWh],

- $p\downarrow C$ carbon price [£/g CO₂eq]
- $\eta \uparrow s$ efficiency of an electricity generator of type *s*,
- $\epsilon \uparrow s$ the additional cost added by the generator [£/MWh].

Model calibration

Model element	Data used and source	Method
Consumers	 Daily demand profiles (half-hourly resolution) (Elexon, 2017) Annual energy consumption by sector up to 2040 (FES, 2016) 	 Daily profiles were aggregated into yearly profiles for different sector and scaled according to annual energy consumption data per sector
Generation	 Installed generation capacities up to 2040 (FES, 2016) Fuel and carbon prices up to 2040 (FES, 2016) Renewable generation profile (renewable.ninja.org) Generator costs (UK-TIMES, 2016) 	 Dispatchable generators – SRMC were calculated for each type of electricity and stacked into a merit order based on installed capacities specified in each scenario Renewable generators – historical generation profiles were scaled according to installed capacities taken from FES
Storage	 Installed storage capacities for pump and consumer storage up to 2040 (FES, 2016) 	 The energy and power constraints were fed into consumer specification and then used in the balancing methods DDF, CDF