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Overview 

v analytical deduction 
v graphical illustrations of principle 
v numeric examples 
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Analytical deduction (1): energy 

v heat flux 

v annual flux 
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Analytical deduction (2): energy cost 

v net present energy cost 

v or 

v with 
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Analytical deduction (3): lowest life cycle cost 

v total net present cost 

v optimum point 
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Climate dependency 
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Unheated spaces 
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Some ext’l verification of the outcomes 

v cost optimal studies for EPBD reporting:  
l  BE-FL: based on full EPB calculations: same 

results 
l  DK: based on (same?) degreeday method: 

same results 
v set of annual eurima ecofys studies (~10 

years ago) 
l  most likely also based on the DD method (but 

nowhere explicitly mentioned (?) ) 
l  several identical conclusions throughout the 

report 
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Without thermal gains 
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With thermal gains 
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Effect of smaller heating systems 

v emitters: often not a large initial cost, so 
not much savings possible 

v heat generator:  
l  some cost reduction possible in originally 

uninsulated buildings 
l  otherwise: size often determined by the hot 

water power needs, so no further downsizing 
possible 
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Influence of the basic resistance of the component 
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Conclusion: the initial basic resistance (Rb)  
does not influence the optimal final resistance 



Influence of the initial minimum cost of applying insulation 
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Conclusion: the initial starting cost of applying insulation 
does not influence the optimal final resistance 
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Influence of the marginal cost of extra insulation 
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Conclusion: the marginal insulation cost 
affects the optimal resistance strongly 
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Influence of the energy price 
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Conclusion: volatile energy prices of the day  
don’t seem a sound basis for long term decisions 
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Upgrading of a moderately insulated component 
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Conclusion: a (high) initial incremental cost  
can render a 2nd round of insulation uneconomic 
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Dependence on energy cost 

19 

	

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

U
_m

ax
,li

m
it 

[W
/(m
²K

)]

R
_m

in
,li

m
it 

 [m
²K

/W
]

energy cost (eurocent/kWh GCV)

R_min,limit for 8 euro/(m²K/W) R_min,limit for 10 euro/(m²K/W) R_min,limit for 6 euro/(m²K/W)

U_max,limit for 6 euro/(m²K/W) U_max,limit for 8 euro/(m²K/W) U_max,limit for 10 euro/(m²K/W)

Conclusion: even if energy cost were 3x times present  
value (20 iso 7 c/kWh) no PH U-values of 0.10-0.12 W/(m²K) 



Other representation: as function of U iso R 
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Dependence on c2 
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Question: what is historic trend of insulation material cost? 



Dependence on degreedays 
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Resistance inversely proportional to square root of DD 
(see analytical deduction slide) 



Conclusions (1) 

Simple degree day method good approximation 
to determine optimal insulation. 
v The optimal resistance is independent of the 

value of the basic resistance Rb of an opaque 
building element (i.e. the resistance at 
starting point before any insulation is added). 

v The optimum is also independent of the initial 
incremental cost associated with starting to 
apply insulation. 

v The optimum mainly depends on the marginal 
cost (including secondary costs) of adding 
extra resistance.   

23 



Conclusions (2) 

v The optimum does not increase linearly with the 
severity of the climate, but proportionally with 
only the square root of the climate severity 
(expressed in terms of degree-days). 

v For unheated adjacent spaces, the optimum 
doesn't decrease linearly with smaller b-factor 
(i.e. the temperature reduction factor) but 
proportionally with only the square root of the b-
factor. 

v The internal and solar gains shift the 
economically optimal resistance to a somewhat 
lower value, but generally speaking the difference 
is probably small (unless the buildings would tend 
towards very low heating needs such as in 
passive houses or equivalent). 
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Informal session, this afternoon @ 16:30 

Setting EPB requirements:  
new (EN) ISO 52003 & 52018 standards, 
and beyond 
v Which objectives are pursued?  
v Which mix of EPB features to set 

requirements?  
v For which indicators?  
v Which strictness?  
v And especially the important issue of 

tailoring requirements to each individual 
building. 
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Questions 

v position vis-à-vis post insulation of cavities in 
brick walls? 
l  U-value from ... 1.5-1.8 ... to ... 0.5-0.65 ... W/

m²K: still much more (2-3 x) than the cost 
optimum of new elements 

l  external insulation not cost effective (5+ times 
more expensive) + different visual aspect 

l  impact on residual energy consumption of a fully 
renovated building stock on RE demand 

v how to deal with PH-insulation apparently 
never becoming economic? 
l  abandon economic behaviour and go for the  

(reasonable) “full” technical potential?  (PH) 
l  economic perspective is only ...30... years into the 

future, but envelope insulation is for building 
lifetime (... 100 ... years) 

v ...? 
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