

Paper 7-422-17

Measurement of Automatic Brightness Control (ABC) in televisions: Critical for effective policy-making

Michael Scholand Marie Baton Robert Harrison

30 May 2017

lasp CLASP - What we do - Where we are

The Collaborative Labelling and Appliance Standards Programme

• Mission:

CLASP improves the energy and environmental performance of the appliances & equipment we use every day, accelerating our transition to a more sustainable world.

• Where:

- Established in the US since 1999
- Worked in over 50 economies
- Dedicated programmes in: Europe (since 2009), India, China

More about us:

www.clasp.ngo

Presentation Outline

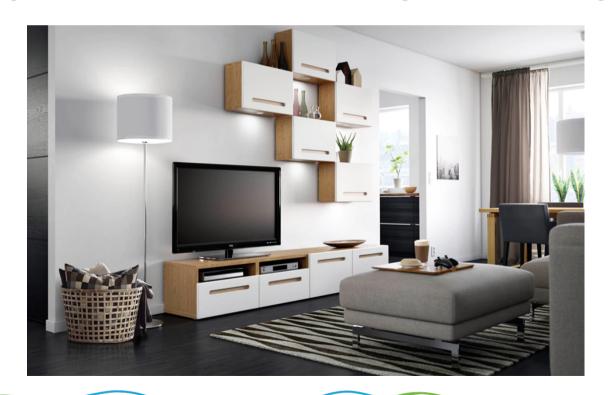
- 1 Introduction and Policy Context
- 2 New ABC Test Methodology
- 3 Application of new ABC Test Method
- 4 Policy Measure and Conclusions

Presentation Objectives

Objectives:

- Appreciate the value of ABC
- Understand the clear, simple test method devised for real-time power measurement
- Observe the ABC software response differences in the market today
- Understand the value policy measures could bring to Europe

Format:


 Happy to be interrupted for clarification, but let's save questions at the end

What is Automatic Brightness Control (ABC)?

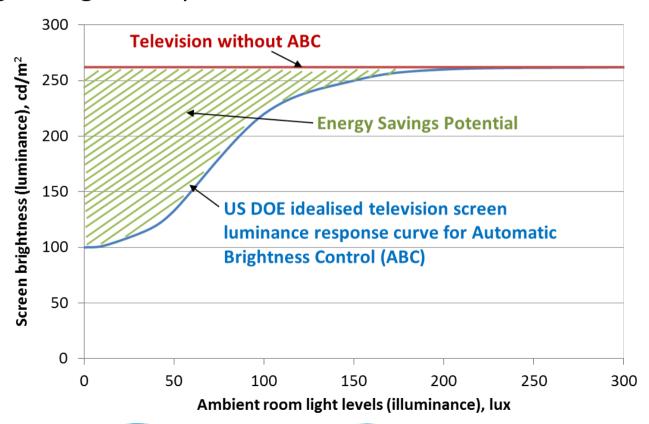
- ABC is an energy saving feature of a TV that uses a built-in light sensor to detect ambient light levels in the room and adjusts screen brightness for viewer comfort.
- Reduced light levels => reduced screen brightness => energy savings.

What are some examples of policy measures concerning ABC?

Europe

Offers manufacturers a 5% reduction on the power consumption in the calculation used to determine energy label class, as set out in the energy labelling regulation.

United States


Energy Star® allows products with ABC to have their on-mode power be the sum of 25% of power at 100 lux, 35 lux, 12 lux and 3 lux.

What is the idealised relationship between illuminance and luminance?

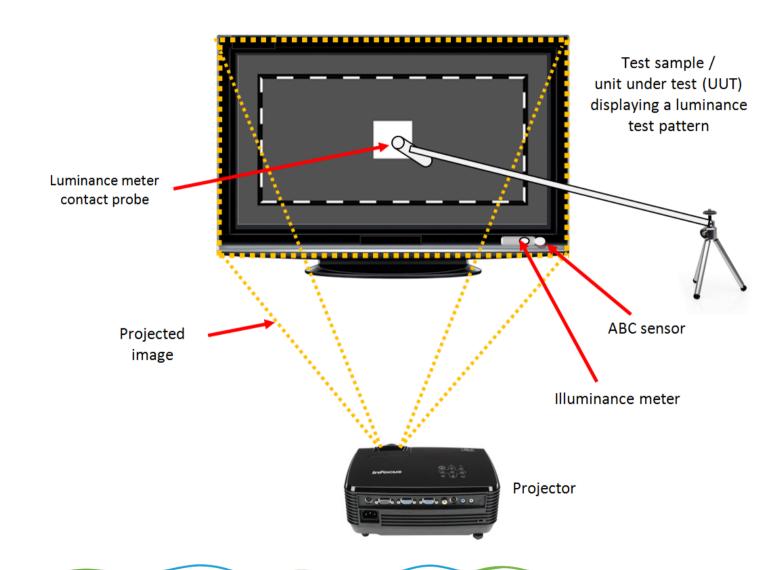
 US DOE study, 2012 looking at the room illuminance levels and screen luminance. Found a logarithmic response curve of human eye – doubling of brightness perceived the same - 10 : 20 :: 100 : 200 (lux)

So what's the issue?

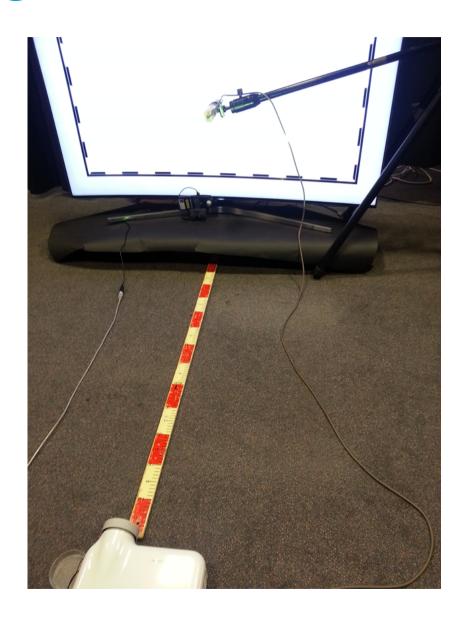
 While the benefits in terms of energy and comfort are well understood, there has been no practicable method for measuring the television's performance until now...

Presentation Outline

- 1 Introduction and Policy Context
- 2 New ABC Test Methodology
- 3 Application of new ABC Test Method
- 4 Policy Measure and Conclusions


What are the advantages of the new ABC test methodology?

- Easily controllable illuminance simply and accurately targeted on to the television's ABC sensor via projector
- Excellent granularity in illuminance as the projector's light output is cycled from full brightness to black and then back to full brightness again;
- Very efficient from lab technician time perspective; and
- Results are accurate and repeatable.



Clasp Graphical illustration of the test setup...

Real Picture #1 of 2

- Projector
- Luminance meter
- Illuminance meter
- TV (unit) under test

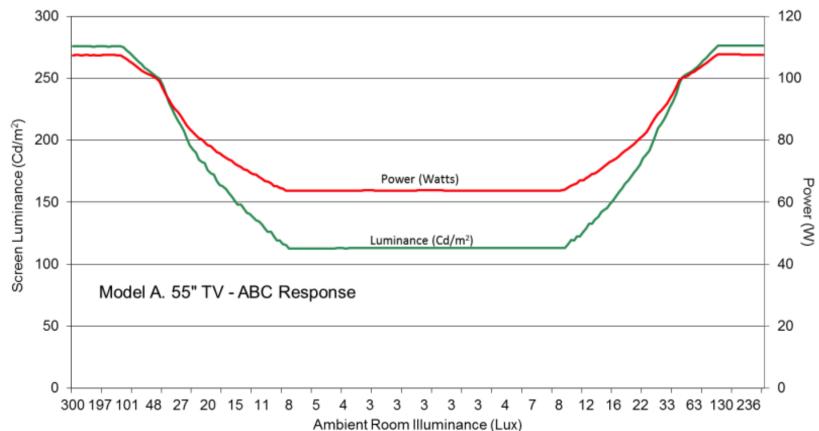
Real Picture #2 of 2

- Data logging equipment
- Light meters luminance (screen) and illuminance (room)
- Power meter consumption (watts) over time
- Powerpoint presentation running projector

Description of the test methodology

- Test setup TV, projector, light sensors and power meter setup in a dark room. Data logging contact colour analyser used for display luminance measurements. Projector approximately perpendicular to screen of unit under test (not precise)
- Pattern a modified European test pattern (EN 62087)
- Adjust to >300 lux position the projector on full brightness until illuminance meter measures it

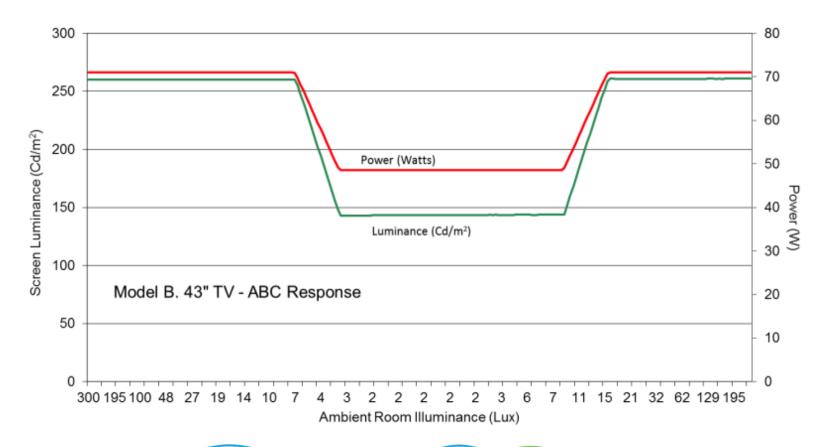
• Vary the projector light output – 39 slides in an automatic show from white (255, 255, 255) to black (0,0,0). Five seconds on each slide, white to black to white.



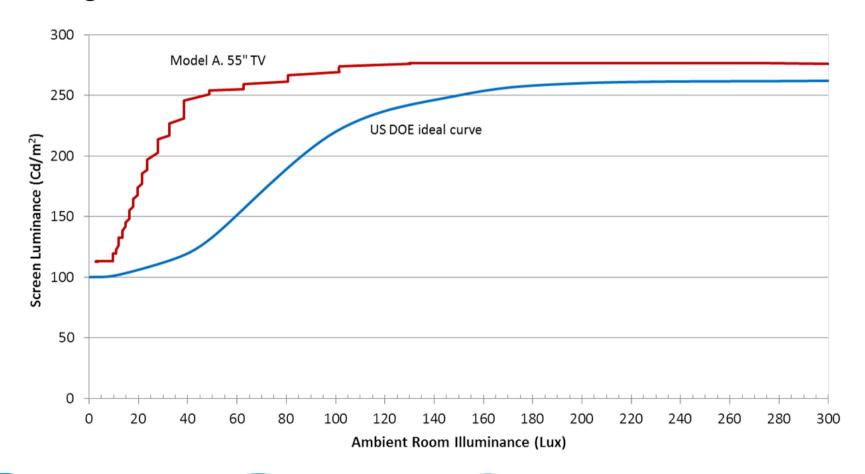
Presentation Outline

- 1 Introduction and Policy Context
- 2 New ABC Test Methodology
- 3 Application of new ABC Test Method
- 4 Policy Measure and Conclusions

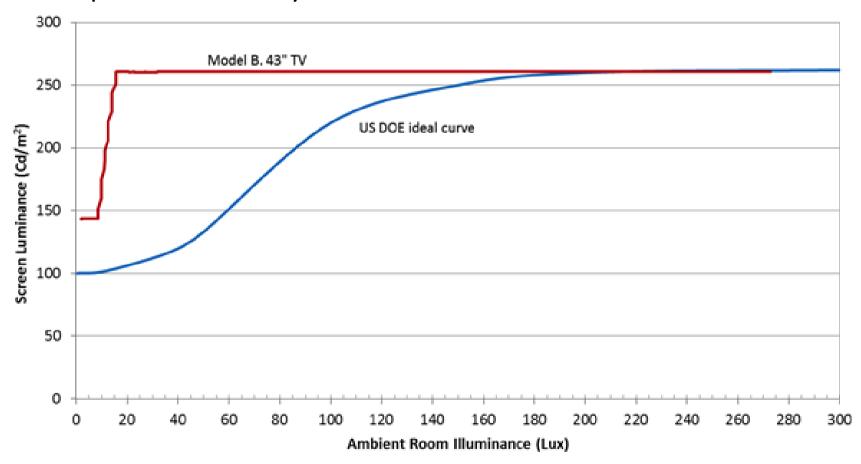
Clasp Application of the new test method... Model A


- Several case studies are presented in the paper
- Power and screen luminance smooth variability
- 41% power savings comparing 300 lux and 2 lux

Another example of power vs. screen luminance....Model B


- A step response room illuminance on X-axis varies, but no change in screen brightness until about 10 lux
- 32% power savings comparing 300 lux and 2 lux

Room illuminance vs. screen luminance - Model A

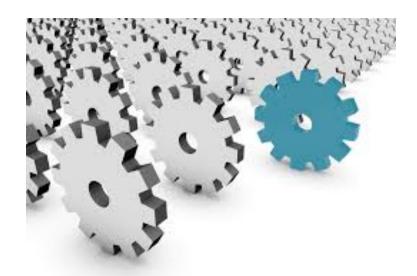

 Comparison to ideal US DOE curve – saves some energy, but is brighter than DOE

Room illuminance vs. screen luminance - Model B

Comparison to ideal US DOE curve – does little to save energy,
 step function clearly visible

Objective of ABC Test Method...

- Testing and reporting on TV response curves for Automatic Brightness Control...
- Achieves better understanding of product behaviour
- Enables better policy measures to be written
- Incentivises manufacturers and will hopefully improve ABC algorithms that save energy


Presentation Outline

- 1 Introduction and Policy Context
- 2 New ABC Test Methodology
- 3 Application of new ABC Test Method
- 4 Policy Measure and Conclusions

Potential Policy Measure

 Commission is currently reviewing the TV regulation and has the potential to adopt this test method as a 'transitional method' until CEN/CENELEC publishes

 Looking at the World Trade Organisation draft published last December, text could be added to section 6.3 and bullet 9 in Annex IV.

Draft policy language

- B) For products supplied with ABC enabled by default, $P_{measured}$ may be reduced by 15% in the calculation of the EEI provided that:
- P_{measured} is recorded with an ambient light illumination of 300 lux measured at the ABC sensor of the display product;
- P_{measured} is recorded at all light levels (L) from 12 to 300 lux using a published transitional test method, and the screen luminance measured in cd/m2 is found to be no greater than +/- 5% of the recommended luminance level characteristic, defined by the equation: = 95+165/(1+EXP(-0.05*(L-75))) where L is the ambient light level measured at the ABC sensor of the display ranging from 12 to 300 lux; and
- P_{measured} reduces by at least 20% when the ambient light illumination measured at the ABC sensor of the display product is reduced from 300 lux to 12 lux.

Conclusions

- Many TV's offer ABC
- A novel test method now exists for measuring power consumption (and screen luminance) in relation to ambient room illuminance
- Testing was conducted on a small sample of real televisions and comparison made to published "ideal" screen luminance
- Clarity on ABC performance enables better policy making
- Commission has a golden opportunity with the current review
- Energy savings opportunity for Europe (and improved viewer comfort)

Questions and discussion

- Michael Scholand, CLASP Europe <u>mscholand@clasp.ngo</u> +44 7931 701 568
- Marie Baton, CLASP Europe
 mbaton@clasp.ngo
 +32 491 59 60 24

 Bob Harrison, Robert Harrison Associates Ltd. Robert.harrison@which.net

+44 7770 777 807