

The Importance of Efficiency in the Building Sector for the Achievement of long-term Climate Protection Targets

eceee, June 04th 2019

Peter Mellwig, ifeu

Current Discussion for the German Building Sector

Technological openness enables less insulation

PtX enables us to use existing technologies

Today's incentives and requirements for buildings are sufficient.

Projektpartner

Alexandra Langenheld

Project Management

Technical Steering Committee

Huy Tran (ECF)
Andreas Jahn (RAP)
Sibyl Steuwer, Oliver Rapf (BPIE)

Advisory Committee

Experts
Stakeholders
Assocations

Norman Gerhardt Irina Ganal Dr. Dietrich Schmidt

- Modelling System
- Cross-Sectoral Optimisation and District Heating Feeding

INSTITUT FÜR ENERGIE-UND UMWELTFORSCHUNG HEIDELBERG

Peter Mellwig
Dr. Martin Pehnt
Dr. Amany von Oehsen
Sebastian Blömer

- Lead Consortium
- Modelling Buildings
 - Modelling District Heating

consentec

Christian Linke
Dr. Alexander Ladermann

 Modelling Electricity Distribution Grids

04.06.2019

Method: What is the "Value of Efficiency"?consentec

- What value/role does energy efficiency have in achieving the climate protection targets in the building heating sector?
- What are the consequences for buildings, energy systems and networks if the energy-saving measures in buildings are not implemented, but instead even more heat pumps, synthetic fuels or other renewables have to be used?

Frame

- Reduce GHG emissions of all sectors by 87.5% by 2050
- Meeting the 2030 building sector target
- Macroeconomic perspective
- Overall conservative modelling for efficiency: population development incl. immigration, price development of fossil fuels falling in the long term

• 4

Schematic Approach

Comparison of the Efficiency² scenario with scenarios in which reduced efficiency is compensated by other RES options.

Schematic Approach

Calculation results of the building model.

Schematic Approach

Evaluation of scenario modeling in two ways

• 7

Modelling

consentec ifeu

Coupling of four models to calculate consistent and comparable scenarios.

Comparison of Scenarios

Total Cost Difference against Efficiency²

Difference of average annuities for the period 2017 bis 2050 at an interest rate of 1,5 %

• 9

Comparison of Scenarios

Total Cost Difference against Efficiency²

Difference of average annuities for the period 2017 bis 2050 at an interest rate of 1,5 %

Comparison of Scenarios

Total Cost Difference against Efficiency²

Difference of average annuities for the period 2017 bis 2050 at an interest rate of 1,5 %

• 11

Comparison of Scenarios

Total Cost Difference against Efficiency²

Difference of average annuities for the period 2017 bis 2050 at an interest rate of 1,5 %

Comparison of Scenarios

Total Cost Difference against Efficiency²

Difference of average annuities for the period 2017 bis 2050 at an interest rate of 1,5 %

Comparison of Scenarios

Total Cost Difference against Efficiency²

Difference of average annuities for the period 2017 bis 2050 at an interest rate of 1,5 %

Evaluation Criteria

Evaluation of scenario modeling in two ways

Evaluation Criteria

- In the alternative scenarios, lower efficiency must always be compensated by an EVEN STEEPER growth in renewable energies.
- Efficiency AND renewables must be ambitiously implemented in the short term.
- The decisive factor is which technology meets the requirements with realistic effort.

4.06.2019

4.06.2019

- Efficiency + PtG/ BAU + PtG: the majority of synthetic methane must be imported
- Efficiency + PtG:

 for production in North Africa,
 102 GW of generation capacity would
 have to be installed in wind and PV
 plants by 2050
- **BAU + PtG**: 178 GW
- For comparison in Germany 2016 installed capacity of all renewable electricity producers: 103.6 GW -> long stretches of the African Mediterranean coast would be required for water supply for electrolysis

2017 2019 2021 2023 2025 2027 2030

2017 2019 2021 2023 2025 2027 2030

- Efficiency + HP:

 annual sales must rise from
 78,000 (2017) to 200,000
 and by 2030 to 620,000
 (80% market share)
- Use predominantly in existing buildings
- In the year 2030 a stock of 4.7 million heat pumps will be reached.

2204.06.2019

Specific Opportunities and Risks

Fault Tolerance and Flexibility

- In scenario Efficiency², more ambitious climate targets (e.g. -95% GHG) can also be achieved.
- In Efficiency², you can react flexibly to unexpected changes or unanticipated preconditions
 - because renewable heat potentials are not fully exploited
 - efficiency enables the use of RES heat
- Lower efficiency makes it increasingly difficult to switch to alternative technologies

Specific Opportunities and Risks

Controllability

- Better predictability for technologies that are broadly established on the market
- In the PtG scenarios, preconditions have to be fulfilled at multinational level which Germany can influence only to a limited extent.
- Preconditions for Efficiency + WP
 - Sufficiently suitable buildings
 - All suitable buildings must install HP
 - how to regulate?

Quelle depositphotos • 04.06.2019

Specific Opportunities and RisksAcceptance

- Generally little willingness to invest in energy renovation fear of financial losses
- Acceptance of building insulation is subject to strong fluctuations
 - Discussion partly shaped by myths
 - can be influenced by appropriate instruments

25 Quelle: Energieinstitut Hessen • 04.06.2019

Conclusions

The future is either "all electric" or "all gas". Technological openness enables less insulation

PtX enables us to use existing technologies

Today's incentives and requirements for buildings are sufficient

"Technology-either/or" will not meet the target:

Pursuing all options with determination and planning in order to move towards the target course.

Efficient Buildings are the door openers for technological openness:

They preserve renewable energy potential and flexibility; without insulation there is no reasonable use of RES.

PtX is expected to stay expensive and continues dependence on imports:

PtX as a supplement in the building sector; no replacement for efficiency; required in other sectors.

"Roadmap efficiency 2030" required:

Align incentives and requirements with the target; best possible use of renovation occasions; flanking measures.

Thank you for your Attention

