
 ECEEE SUMMER STUDY PROCEEDINGS 745

What makes you peak? Cluster analysis 
of household activities and electricity 
demand

Aven Satre-Meloy
Environmental Change Institute
University of Oxford
3 S Parks Rd, 
Oxford OX1 3QY
UK 
aven.satremeloy@ouce.ox.ac.uk

Marina Diakonova
Environmental Change Institute
University of Oxford
UK
marina.diakonova@ouce.ox.ac.uk

Philipp Grünewald
Environmental Change Institute
University of Oxford
UK
philipp.grunewald@ouce.ox.ac.uk

Keywords
peak load, household electricity, cluster analysis, demand re-
sponse, time use, demand patterns

Abstract
Researching the dynamics of energy consumption at finely 
resolved timescales is increasingly practical with the growing 
availability of high-resolution data and analytical methods to 
characterise them. 

One of the methodological approaches that has recently be-
come popular for exploring energy consumption dynamics is 
load profile clustering. Despite an abundance of available algo-
rithmic techniques, clustering load profiles is challenging be-
cause clustering methods do not capture the temporal aspects 
of electricity consumption well and because cluster results are 
difficult to validate without detailed auxiliary data. These chal-
lenges make it difficult to use cluster analysis to better under-
stand drivers of different electricity consumption patterns.

We address these challenges by applying a novel approach to 
a unique dataset of high-resolution electricity data, household 
socio-demographics, and occupant time-use data for a sample 
of 135 UK households.

Clusters can be identified for typical electricity use patterns 
and linked to activity patterns underlying these. We use this 
detailed data to validate load profile clusters, exploring how dif-
ferent socio-demographic data and patterns of household ac-
tivity explain electricity consumption trends, focusing primar-
ily on late afternoon and evening hours in the UK (4–9 pm), 
during which peak demand occurs.

We present peak-period clusters and the household char-
acteristics and activities driving their demand. We show how 

such an approach can aid in segmenting classes of consumers 
to develop more targeted strategies for demand reduction and 
response interventions. This knowledge can be used to better 
understand the constraints and opportunities for a more flex-
ible demand-side in the electricity sector.

Introduction
Reducing overall electricity demand in buildings through en-
ergy efficiency is an important component of climate mitiga-
tion strategies. But in addition to reducing total demand, better 
understanding the temporal aspects of electricity consumption 
is especially important in energy research. The domestic sector 
accounts for around 45 % of total UK electricity consumption 
and 50 % of UK national peak demand (BEIS, 2018; Ofgem, 
2010). Reducing system peak demand lowers the costs and 
carbon-intensity of electricity generation. Delivering more 
responsive demand can also help integrate variable renewable 
energy into existing power systems. Beyond making electricity 
use more efficient, understanding how to increase the flexibility 
of use will benefit any low-carbon energy strategy (Grunewald 
and Diakonova, 2018). 

Deeper insight into the factors that influence consumption 
patterns across hours of the day can inform solutions for de-
mand flexibility and can improve efforts to target consumers 
for time-sensitive reductions in usage. Recent research suggests 
occupant activity data may be particularly valuable for under-
standing patterns of electricity consumption during different 
times of day (Satre-Meloy et al., 2018). Access to high-resolu-
tion electricity consumption and activity data can strengthen 
these insights if appropriate methods are used to characterise 
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them. One technique used to identify temporal variations in 
electricity consumption that has gained popularity in recent 
years is cluster analysis of electric load profiles. 

Cluster analysis is an algorithmic approach used to identify 
homogenous groupings of data where no a priori grouping 
exists. This data mining technique has gained popularity with 
the rise of ‘big’ data and machine learning, and it has been 
applied in recent research to interval meter data from residen-
tial customers (Rhodes et al., 2014; McLoughlin et al., 2015; 
Haben et al., 2016; Jin et al., 2017). This emerging research 
aims to apply various clustering algorithms to electricity load 
profiles for the purpose of identifying representative classes of 
residential customers, which can then be explained by socio-
demographic or other household data. Such characterisation 
of load profiles can aid in understanding what drives varia-
tions in electricity use at finely-resolved timescales and can 
help identify targeted strategies for helping households shift 
demand. 

Identifying robust links between household load profiles 
and other descriptive data faces two related challenges. First, 
there are numerous methodological considerations that must 
be addressed in order to ensure the clustering results are 
mathematically sound. These considerations are reviewed in 
the methods section of this paper. Second, because clustering 
is a technique that always yields some segmentation of data 
into groups, it can be difficult to gauge whether in addition to 
being mathematically sound, the clustering results are helpful. 
In other words, it is important to question whether clusters 
are useful for determining underlying patterns, such as the 
drivers of varying load profile patterns. Overcoming this chal-
lenge requires having access to various types of descriptive 
data to link to clusters.

This paper aims to improve upon previous residential load 
profile clustering efforts by introducing a novel approach for 
pre-processing and clustering household load profiles. We pro-
pose a simple approach to cluster cumulative rather than raw 
load profiles, which enables more appropriate use of Euclidean 
distance metrics to account for temporal rather than magni-
tude differences between clusters. This approach to pre-pro-
cessing the data does not appear to have been used in previous 
cluster analyses of building load profiles. After pre-processing, 
we apply a hierarchical clustering algorithm to yield clusters 
that are more similar and distinct across their full shape than is 
the case when directly clustering raw load profiles. Using this 
approach results in household clusters that have clearly differ-
entiated consumption trends from 4–9 pm, which is the time 
period we focus on for the purpose of understanding drivers of 
peak period electricity consumption. 

This paper then performs an exploratory data analysis to 
link our unique dataset of household demographics, physical 
dwelling characteristics, appliance ownership, and time-use 
activity data to these clusters, showing how these data explain 
different peak-time user classes. The objective of this analysis 
is to show how access to household activity data, in addition to 
conventional demographic and appliance ownership variables, 
can improve segmentation of customers and identify the activi-
ties driving their demand. We show how such an approach can 
improve load profile clustering efforts for the specific purpose 
of developing more targeted and effective strategies for demand 
reduction and response interventions.

Methods

DATA COLLECTION AND SAMPLE
Data are collected as part of a five-year study for which data 
collection is ongoing (Grünewald and Layberry, 2015). Partici-
pating households, which are recruited online via e-mail and 
social media, complete a household survey before participating 
wherein they provide socio-demographic data along with phys-
ical dwelling characteristics and household appliance owner-
ship details. Fuel type used for heating and cooking appliances 
is also collected here. Households then receive a parcel prior to 
their selected study date containing an electricity recorder, ac-
tivity recorder(s), and an instruction booklet. Each household 
member over eight can participate. 

On their selected date, which can be any day of the week 
excluding holidays, participants are instructed to attach the 
electricity recorder to their mains electricity. The recorder col-
lects electricity consumption data at one-second resolution for 
28 hours, from 5 pm until 9 pm on the following day. Around 
two-thirds of households participate on a weekday in the win-
ter or shoulder seasons (September–April). 

Activities are recorded using a purpose-built app that comes 
pre-installed on individual devices. The app guides participants 
through screens where they can enter the activity location, de-
tails of the activity, number of people participating, and enjoy-
ment of the activity. The ‘activity details’ screens are tailored 
to collect numerous details on the type of activity, appliances 
used, and other energy-relevant details (see Figure 1). These 
screens enable participants to record more detail than would 
be possible using paper-based activity diaries, which have been 
used extensively for time-use research (eurostat, 2009). Par-
ticipants are encouraged to record activities in real time, and 
activities are recorded at points in time rather than for dura-
tions in time. The app also provides for recording activities 
retrospectively and in the future. More details are discussed in 
Grünewald et al. (2017). 

Several exclusion criteria are used to narrow down the study 
sample. Households where electricity records show continu-
ous readings below 20 Watts are excluded (N=2), as this likely 
signals a failure to correctly attach the electricity recorder. 
Households that did not complete the full household survey 
are removed, and activities recorded outside the home are not 
included, since our primary interest is the direct relationship 
between electricity consumption and in-home activities (rather 
than those recorded at work, for instance). Finally, we restrict 
our data to the hours of 4–9 pm on the second day of the study 
and only include activities reported during these hours in or-
der to investigate peak-time user clusters and activities driv-
ing their consumption patterns. Our final sample consists of 
135  households and 350  individuals who together recorded 
1,247 activities in the home during the 5-hour window from 
4–9 pm. 

DATA PRE-PROCESSING
Pre-processing data is an important part of any data analy-
sis task and may include handling missing data and outliers, 
transforming and normalising data, and cleaning data prior 
to analysis. Previous research shows that clustering results are 
sensitive to numerous considerations with regard to 1) how 
to pre-process and prepare data for clustering, 2) how to de-
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fine ‘distance’ for the clustering algorithm in order to group 
together data that are ‘closer’ or ‘more similar’, and 3) how to 
select an appropriate clustering algorithm. Jin et al. (2017) re-
view these and other considerations in detail. Here, we discuss 
our approach. 

Load profile normalisation
Normalisation is given close scrutiny in previous research on 
clustering load profiles. The goal of normalisation when clus-
tering load profiles is driven by the analysis objective, which is 
typically either to cluster by magnitude of electricity consump-
tion or by temporal variation in electricity use. 

In past work where the aim was to segment consumers by 
the magnitude of their consumption, normalisation was done 
using a reference demand, such as the daily maximum demand 
of each household (Chicco, 2012; Chicco et al., 2006). In other 
research, usage was normalised by dividing by the range, of-
ten called min-max normalisation (Cao et al., 2013; Piao et al., 
2014), or by the daily total (Kwac et al., 2014; Rhodes et al., 
2014). 

When the objective is segmentation by temporal variation in 
electricity use, or in other words, focusing on the relative mag-
nitude of consumption in regard to the time of day, an alterna-
tive normalisation approach is more appropriate. In this paper, 
we apply a technique proposed by Jin et al. (2017) to normalise 
profiles such that clustering them will group together house-

holds with similar patterns of discretionary consumption at 
different times of day. The authors’ method is to subtract daily 
minimum demand from hourly usage (called ‘de-minning’) 
and then divide each hour’s consumption by the ‘de-minned’ 
total. Using this approach, daily minimum power demand is 
a proxy for baseload consumption, and after normalising the 
load profiles, “a load shape represents its hourly contribution 
to daily total discretionary usage and shape clusters can be in-
terpreted in terms of timing of higher and lower discretion-
ary demand” (Jin et al., 2017, p. 2). Before normalising, we ag-
gregate electricity data and take the hourly average in order to 
yield smoother profiles and a simpler clustering process, but 
our method could be applied to electricity data measured at 
more frequent intervals. Figure 2 presents original hourly load 
profiles, and Figure 3 presents normalised load profiles for our 
full sample of households (N=135) during the study period 
(4–9 pm). 

Distance metrics for cluster analysis
Since clustering works to group data objects that are similar 
into the same cluster and ensure these objects are dissimilar 
to those in other clusters, an important step in clustering is to 
determine how dissimilarity will be calculated. Determining 
dissimilarity is done using a distance measure, and many meas-
ures have been proposed in the clustering literature (Pandit and 
Gupta, 2011). 

Figure 1. Activity-based time-use diary and sample activity entry sequence.

Figure 2. Hourly load profiles from 4–9 pm for full sample of households (N=135).
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The most well-known distance metric used for clustering 
continuous data is the Euclidean distance (Jain et al., 1999). 
The Euclidean distance is a useful metric for calculating the 
distance of objects in two or three-dimensional space. It is the 
straight-line distance between two points and is a variant of the 
Minkowski metric, which is defined as:

 (1)

where D(X,Y) gives the distance of order p between two points 
X = (x1, x2, …, xn) and Y = (y1, y2, …, yn) ∈ n. If p = 2, this equa-
tion gives the Euclidean distance, and if p = 1 it gives the Man-
hattan or city block distance, which is the distance between two 
points measured along axes at right angles and is so-named 
because it is achieved by walking ‘around the block’ compared 
to the Euclidean ‘straight line’ distance. If p = ∞, the equation 
gives the Chebyshev distance, which is the greatest of the dif-
ferences between two vectors along any coordinate dimension 
(Chicco, 2012). 

Several other variants of Euclidean distance include the 
squared Euclidean distance (sqeuclidean), which places great-
er weight on objects that are farther apart, and standardized 
Euclidean distance (seuclidean), which divides the Euclidean 
distance by the variance of all the ith components of the objects, 
thus achieving a similar aim as normalising data prior to meas-
uring distance.

Additional distance metrics intended for use with continu-
ous data, and which have been proposed for clustering load 
profiles, include cosine dissimilarity, which measures the co-

sine of the angle between two vectors, and correlation dissimi-
larity, which uses the correlation coefficient as the dissimilarity 
indicator. 

Importantly, these metrics are used when clustering data in 
Euclidean space. Clustering time series, such as hourly load 
profile data, introduces challenges because traditional distance 
metrics such as those described above are inadequate for deter-
mining dissimilarity. This is because Euclidean distances do not 
capture the ordered, temporal aspect of time-series data. A sim-
ple example of this is given in Figure 4, which shows three 6-el-
ement vectors with magnitude 5 plotted both as untransformed 
(a–c) and cumulative (d–f) time series. Using the Minkowski 
equation with p = 2, the Euclidean pairwise distance for each 
pair of the untransformed time-series plots in Figure 4 (a–c) is 
equal to  . In other words, clustering these time series using 
Euclidean distance would place these points equidistant from 
each other.

We propose a simple fix to this issue. To the authors’ knowl-
edge, this approach has not been used previously to pre-process 
load profiles prior to clustering. Instead of clustering untrans-
formed time series, we first integrate with respect to time and 
cluster cumulative time series. The effect of doing so is shown 
in plots d–f of Figure 4. Now, the Euclidean distance between d 
and e is  , the distance between d and f is  , and the 
distance between e and f is  . Clustering these cumulative 
time series would group together d and e, which we argue is 
more appropriate given that they occur closer together in time. 

This approach avoids the aforementioned issues and permits 
the appropriate use of Euclidean distances and their variants 
for clustering load profile data. While other approaches have 

Figure 3. Normalised hourly load profiles from 4–9 pm for full sample.

Figure 4. Example of three time series with equal Euclidean distances between each pair of untransformed time series (a–c) but with 
different Euclidean distances between each pair of cumulative time series (d–f). 
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been proposed for clustering time series data (e.g. Teeraratkul 
et al. (2018)), we argue our approach is advantageous both in its 
conceptual simplicity as well as its ease of implementation. In 
combination with the normalisation approach described previ-
ously, we cluster cumulative, normalised hourly load profiles, 
thus achieving the simultaneous goals of focusing on temporal 
variations in discretionary usage while also enabling straight-
forward Euclidean distance clustering. Figure 5 presents the 
cumulative, normalised hourly load profiles for the full sample 
during the 4–9 pm period. 

Choice of clustering algorithm
A final consideration is the choice of clustering algorithm. A 
wide range of conventional and novel clustering methods have 
been applied to residential load profiles in the existing litera-
ture, and these generally fall under three families of clustering 
techniques: centroid-based methods, which group each obser-
vation to its closest centroid and iteratively update centroids 
until convergence (when the centroids no longer change); hi-
erarchical clustering methods, which use a linkage criterion to 
determine the distance between different clusters and then suc-
cessively merge these clusters in an agglomerative fashion; and 
model-based clustering, which fits a probability distribution to 
each cluster, or component, and assigns data points based on 
the probability of belonging to each cluster. See Jin et al. (2017) 
for an overview of these methods. 

We use a hierarchical agglomerative clustering (HAC) algo-
rithm rather than a centroid- or model-based method. HAC 
algorithms start with an initial cluster assignment where each 
observation (household) forms its own singleton cluster. Then, 
using a chosen distance metric to compute a dissimilarity ma-
trix for the data, the singleton clusters are grouped into binary 
clusters using a linkage criterion. This process is repeated in 
an iterative fashion, merging clusters at each successive level 
until all observations are grouped into a single cluster (Chicco 
et al., 2006). 

There are several linkage criteria that can be used with an 
HAC algorithm. These vary slightly in how they measure the 
distance between clusters at each successive level. ‘Single link-
age’ measures the distance between the closest pairs of observa-
tions between two clusters, while ‘complete linkage’ measures 

the distance between the furthest pairs of observations. The ‘av-
erage linkage’ criterion measures the average distance between 
all cluster members, which can avoid the tendency of single 
linkage to form few large clusters or the tendency of complete 
linkage to form many smaller clusters. Two additional linkage 
criteria we consider are ‘Ward’, which forms clusters by mini-
mising the within-cluster sum of squares at each iteration, and 
‘centroid’, in which the similarity of two clusters is defined by 
the similarity of their centroids. 

We apply an HAC algorithm instead of other methods for 
several reasons. First, in contrast to other methods, HAC algo-
rithms do not require advance knowledge of the number of clus-
ters and output an intuitive, visual representation of the cluster-
ing process. This visual is a dendrogram, or tree diagram, and it 
shows how clusters are merged at successive steps and thus gives 
a visual history of the clustering process. This can aid in deter-
mining the number of clusters by signalling where to ‘cut’ the 
tree, which is typically done where a large increase in distance 
between existing clusters is found. HAC is also advantageous 
in that it is easy and straightforward to implement. The disad-
vantages of HAC are that it can be computationally expensive 
when applied to large datasets, it does not handle missing data 
well, and it works poorly with mixed data types. Given the rela-
tively small dataset, the absence of missing data, and the single 
data type used to cluster households in the present study, we use 
HAC for its simplicity and ease of interpretation. 

CLUSTER AND EXPLORATORY DATA ANALYSES
After normalising and transforming raw hourly load profiles 
for our sample of households, we apply hierarchical cluster-
ing to these profiles using a combination of different Euclid-
ean distance metrics and linkage criteria. For each distance-
linkage combination, we compute the cophenetic correlation 
coefficient (CCC), which measures the linear correlation be-
tween pairwise distances for original observations and mod-
elled dendrogram distances for those observations (Jin et al., 
2017). In other words, the CCC measures how well the HAC 
dendrogram preserves distances between original data points. 
A value of 1 indicates perfect correlation. Figure 6 presents a 
heatmap of the CCC values for each distance-linkage combi-
nation. The heatmap shows that average and complete linkage 

Figure 5. Cumulative normalised hourly load profiles from 4–9 pm for full sample.
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combinations outperform single linkage combinations, and it 
shows that standardised Euclidean and correlation dissimilar-
ity metrics do not preserve the original data structure as well 
as the other metrics. We select the top three combinations and 
compute dendrograms for each. These are average linkage with 
Chebyshev distance, complete linkage with Euclidean distance, 
and average linkage with Euclidean distance. 

To perform final clustering, we use a clustering validity in-
dicator, the silhouette index, to determine the optimal number 
of clusters across each of the three selected distance-linkage 
combinations. There are many different cluster validity indica-
tors reported in the clustering literature, and these are used to 
assess how ‘compact’ and ‘distinct’ the final clusters are. The 
silhouette index is used to measure both compactness and dis-
tinctness simultaneously (Rousseeuw, 1987). The silhouette 
score is given by:

 (2)

where a is the average intra-cluster distance and b is the average 
shortest distance to another cluster. The silhouette score ranges 
from [-1, 1], where a high value indicates the observations in 
the cluster are well matched to each other and poorly matched 
to observations in other clusters. Computing the silhouette 
scores across a range of numbers of clusters (in other words, 
a range of values at which to cut the dendrogram) enables 
comparison of the validity of each distance-linkage approach 
for varying numbers of clusters. Figure 7 shows how the sil-

houette scores vary for each of the three chosen combinations 
of distance metrics and linkage criteria. This figure exhibits a 
typical elbow shape, indicative of scores that are high for small 
numbers of clusters but decrease and stay low as the number of 
clusters increases. Scores are relatively similar across distance-
linkage combinations, so choosing the method and number of 
clusters is also guided by the objective of yielding clusters with 
more even distributions in cluster size. 

We investigate dendrograms to make a final selection. The 
method that gives the most even cluster sizes while also main-
taining a silhouette score and CCC that compare well to the 
other methods is the combination of Euclidean distance with 
the complete linkage criterion and three clusters. These are the 
parameters that are used to cluster the cumulative, normalised 
hourly load profiles for our sample of households, and these are 
the clusters on which our subsequent exploratory analyses are 
based. In the following section, we present cluster results along 
with how clusters are differentiated by socio-demographic, phys-
ical dwelling, appliance ownership, and activity pattern data. 

Results

HIERARCHICAL CLUSTERING RESULTS
We apply HAC to cumulative, normalised hourly load profiles 
for our sample of 135 households during the hours of 4–9 pm. 
We use Euclidean distance and the complete linkage criterion 
to cluster load profiles. Cluster results are validated using the 

Figure 6. Heatmap of CCC values across combinations of distance and linkage methods used in hierarchical clustering.

Figure 7. Silhouette scores for varying numbers of clusters across three distance metric and linkage criterion combinations.

𝑆𝑆𝑆𝑆𝑆𝑆$%&'( =
max	(𝑎𝑎, 𝑏𝑏)
𝑏𝑏 − 𝑎𝑎  
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silhouette index, and the number of clusters is set to three to 
balance selecting a cluster assignment with a comparatively 
high silhouette score as well as a more even distribution of 
cluster sizes. 

Figure 8 shows cluster results plotted with all cumulative, 
normalised load profiles, and Figure 9 shows cluster averages 
plotted with original, non-transformed load profiles. These 
plots show how clusters are differentiated in terms of their 
peak-period usage profiles. Cluster 1, which includes 37 house-
holds, has an early peak around 4 pm and has decreasing hourly 
usage through the rest of the evening. Cluster 2, the largest 
cluster with 75 households, shows increasing hourly consump-
tion until its peak around 7 pm and then steadily decreasing 
consumption. Cluster 3 is the smallest cluster with 23 house-
holds, and this cluster has the lowest consumption in the early 
afternoon with steadily increasing consumption through the 
evening and a late peak at 9 pm. The peak totals for each cluster 
are similar, with cluster 1’s peak total equal to 1,208 W at 4 pm, 
cluster 2’s peak total equal to 1,030 W at 7 pm, and cluster 3’s 
peak total equal to 1,050 W at 9 pm. During the typical time for 
UK system peak demand, the group with the highest demand 
are the ‘early peak’ households in cluster 1. These therefore 
deserve particular attention in efforts to reduce peak demand 
(DECC, 2014). 

SOCIO-DEMOGRAPHIC, DWELLING, AND APPLIANCE OWNERSHIP 
CHARACTERISTICS
Clusters are investigated for differences in socio-demographic, 
dwelling, and appliance ownership characteristics to explore 
how these factors might explain peak-period usage profiles. Ta-
ble 1 presents descriptive statistics for each of the survey vari-
ables across all three clusters and for the full sample. Several 
differences stand out between clusters. 

Cluster  1 has a lower frequency of flats/apartments but a 
higher frequency of terraced houses than the other clusters and 
full sample. It also has the highest frequency of homeowners 
(as opposed to renters) and the highest mean number of occu-
pants over 50 years old. Conversely, it also has the highest mean 
number of young occupants (under the age of 18). This cluster 
is also characterised by higher ownership of washing machines 
and tumbler dryers, TV/computer screens, night storage heat-
ers, and power showers than the other clusters.

The households in cluster 2 are more likely to be detached 
or semi-detached, are primarily owned rather than rented, and 
more often have electric hobs and portable heaters than the 
other clusters. This cluster also exhibits the highest frequency 
of households with annual income over £50,000 and 1–2 oc-
cupants, along with the lowest mean number of occupants un-
der 18. This cluster is most similar to the full sample, which 

Figure 9. Non-normalised, original load profiles plotted with cluster averages for each cluster.

Figure 8. Cumulative, normalised hourly load profiles with cluster averages plotted for each cluster.
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could be expected because it accounts for more than 50 % of 
the full sample. 

Cluster 3 contains the highest frequency of flats/apartments 
and renters, the lowest mean number of occupants aged over 
50, and somewhat lower large appliance ownership than the 
other two clusters. There is also a lower frequency of large 
dwellings in this sample and of households with annual income 
over £50,000. 

PEAK-TIME ACTIVITY PATTERNS 
Activities reported from 4–9 pm by each cluster of households 
are grouped and investigated to understand how differences in 
the frequency of activities and their timing might explain dif-
ferences in electricity consumption patterns. For this explora-
tory analysis, activity histograms are created to display the 
distribution of activity times for each cluster of households. 
We focus on activities that are reported most frequently across 
clusters as well as those we expect have some bearing on tim-
ing of peak usage, such as activities involving large appliances. 

These activity histograms are presented in Figure  10. Each 
activity histogram presents frequency counts for the median 
time an activity is reported by households in each cluster. We 
plot the median activity time for the entire household rather 
than the timing of activities recorded by individuals in each 
household for simplicity and to ensure the activity time for 
each household is not affected by ‘outlying’ individuals within 
each household. Some information on activities may be lost 
here, but for the purpose of investigating cluster-wide timing 
of different activities, we believe the median is a suitable met-
ric. Each plot in Figure 10 also displays the mean and median 
timing of the activity for the whole cluster, which enables a 
comparison between them.

Activities that have the highest frequency across the full 
sample are eating a hot meal, watching TV, using the kettle or 
having a hot drink, ‘custom’ activity, cooking with the oven or 
on the hob, reading, arriving home, socialising, and computer/
Internet time. Watching TV is the most frequent activity for 
cluster 1, while reading is the most frequent for cluster 3. 

Table 1. Descriptive statistics for select socio-demographic, dwelling, and appliance ownership variables for each cluster and for full sample. Mean (M) and 
standard deviation (SD) are given for continuous variables.

Description Response Cluster 1 (4 pm 
peak) (n=37) %

Cluster 2 (7 pm 
peak) (n=75) %

Cluster 3 (9 pm 
peak) (n=23) %

Full sample 
(n=135) %

Home type Flat/apartment 16 21 41 21
Detached 24 27 13 24
Semi-detached 22 28 26 26
Terraced and 
other

38 24 30 29

Tenure Rent 14 16 26 17
Own 86 84 74 83

No. of rooms 2 or fewer 5 5 17 7
3–5 49 42 52 53
6 or more 46 53 31 40

Household income <£25,000 22 16 22 19
<£35,000 5 11 9 9
<£50,000 22 19 22 20
>£50,000 51 54 48 52

No. of occupants 1–2 49 63 47 56
3–4 51 37 53 44

No. of occupants 
by age (count)

Under 18 M = 0.99, SD = 1.77 M = 0.61, SD = 1.41 M = 0.78, SD = 1.37 M = 0.75, SD = 1.5

19–50 M = 1.16, SD = 1.64 M = 1.31, SD = 1.69 M = 1.56, SD = 1.86 M = 1.26, SD = 1.65
Over 50 M = 0.78, SD = 1.41 M = 0.61, SD = 1.15 M = 0.35, SD = 0.65 M = 0.61, SD = 1.20

Large appliances Washing 
machine

97 83 74 85

Tumble dryer 46 28 35 34
Washer dryer 8 19 22 16
Gas boiler 89 76 70 79
Heat pump 5 4 4 4
Electric hob 24 40 35 35

Other appliances 
(count)

TV/computer 
screens

M = 3.11, SD = 1.59 M = 2.65, SD = 1.74 M = 2.17, SD = 1.19 M = 2.7, SD = 1.64

Air conditioners M = 0.08, SD = 0.36 M = 0.03, SD = 0.16 M = 0.09, SD = 0.29 M = 0.05, SD = 0.25
Portable heaters M = 0.35, SD = 0.72 M = 0.51, SD = 0.72 M = 0.39, SD = 0.66 M = 0.44, SD = 0.71
Night storage 
heaters

M = 0.27, SD = 1.04 M = 0.07, SD = 0.30 M = 0.17, SD = 0.84 M = 0.14, SD = 0.68

Power showers M = 0.41, SD = 0.69 M = 0.32, SD = 0.64 M = 0.22, SD = 0.52 M = 0.33, SD = 0.63
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eating activities, as energy-intensive activities such as cook-
ing with the oven or hob are more clearly differentiated across 
clusters than are recreational activities, such as watching TV or 
using the computer. 

These results have implications both for methodological ap-
proaches to electricity consumption characterisation as well as 
our understanding of the drivers of residential peak demand. 
The methodological implications are that cluster results are 
highly sensitive to data pre-processing techniques. While nor-
malising load profiles prior to clustering is common in most 
studies, considerations of which distance metrics to use with 
time-series data are less often discussed. We show a simple 
technique to appropriately use Euclidean distances with time-
series data. 

The empirical implications of our results show how occu-
pant socio-demographics and activities relate to the temporal 
aspects of household electricity consumption. Usage curtail-
ment potential varies considerably across customers, so under-
standing the factors that make customers more or less able to 
shift or curtail demand at different times of day can help to 
achieve greater responses. For instance, our results suggest that 
the households that contribute the most to UK system-wide 
peak demand are those with older occupants that have earlier 
cooking and meal times. This knowledge is useful for consider-
ing appropriate interventions, as evening meal practices may be 
particularly challenging to shift. Our results related to house-
hold income are mixed, but the late peaking cluster includes 
more lower-income households and also more renters. Design 
of targeted interventions, especially those relying on a price 
signal to shift demand, will benefit from taking this knowledge 
into account. Lower-income households as well as renters may 
have less ability to respond and thus may be more adversely im-
pacted by time-of-use tariffs than homeowners and wealthier 
households. 

Some limitations are present in the data and analysis. The 
sample size for this study is small, and cluster results are thus 
more prone to error. Our sample also consists of study days 
that vary across seasons and days of the week (though most 
of our sample participated on a winter weekday). Day of week 
and seasonal differences are no doubt important for under-
standing the temporal aspects of activities and electricity con-
sumption. We also expect biases are present in our sample’s 
activity reporting and note biases in its socio-demographic 
makeup, such as an overrepresentation of high-income and 
well-educated households. Participant self-selection is a fur-
ther source of bias. 

In terms of analysis, only one cluster validity index is used 
to determine the optimal number of clusters, and because 
we also take into account evenness of cluster sizes, this deci-
sion is ultimately a subjective one. Use of additional indices 
or comparison with other clustering algorithms would make 
this analysis more robust. Our analyses of socio-demograph-
ic, dwelling, and activity differences between clusters are 
exploratory in nature, and we plan in future to conduct full 
statistical analyses of these relationships using formal model-
ling techniques. 

Accepting these limitations, the approach we demonstrate 
can help identify constraints and opportunities in achieving 
more responsive demand in the residential sector. We expect 
this approach to yield greater insights when applied to a larger, 

In terms of activity timing, Figure 10 shows that activity pat-
terns between clusters are not, on the whole, clearly differenti-
ated. Food-related activities do, however, show some bearing 
on timing of peak usage, especially the timing of cooking on the 
hob or using the oven. The cluster with an earlier peak (4 pm) 
has a mean time for this activity that is a full hour before the 
‘7 pm-peak’ cluster, which in turn reports a mean cooking time 
that is 30 minutes earlier than the ‘9 pm-peak’ cluster. The tim-
ing of the evening meal for the ‘4 pm-peak’ cluster is nearly an 
hour earlier than in the ‘7 pm-peak’ cluster and half an hour 
earlier than in the ‘9 pm-peak’ cluster. 

Results for recreational activities are mixed. The mean 
timing of watching TV for each cluster is within a period of 
30 minutes (19:06–19:29). Mean computer and Internet use oc-
curs around the same time in the ‘4 pm-peak’ and ‘7 pm-peak’ 
clusters (18:44 and 18:28, respectively), but slightly later in the 
‘9 pm-peak’ cluster (19:04). 

Though they are not shown in Figure 10, several other activ-
ity histograms were investigated. Mean evening shower time 
occurs earlier in the ‘4 pm-peak’ cluster than in the other clus-
ters, and the meantime for socialising occurs about an hour 
later in the ‘9 pm-peak’ cluster than in the other two. Mean 
timing of washing dishes occurs later in the ‘4 pm-peak’ cluster 
(19:59) and ‘9 pm-peak’ cluster (19:34) than in the ‘7 pm-peak’ 
cluster (18:57). 

Discussion and conclusions
This paper presents an integrated cluster and exploratory data 
analysis of hourly peak-period electricity consumption for 135 
UK households. It addresses key challenges inherent to cluster-
ing load profiles through several important data pre-processing 
steps. First, we normalise load profiles using an approach such 
that the timing of discretionary usage is the main criteria on 
which households are clustered. Second, we integrate house-
hold load profiles with respect to time in order to more ap-
propriately use conventional clustering metrics while focusing 
on the temporal variations in consumption. The results of our 
cluster analysis show three representative usage classes with 
relatively even sizes. Clusters include one that peaks in the early 
afternoon at 4pm and decreases its usage through the evening, 
one that increases until its peak at 7 pm and then decreases 
thereafter, and one that slowly increases through the evening 
until a late peak at 9 pm. 

Next, our exploratory analysis shows that while socio-de-
mographic and activity data do not completely differentiate 
clusters of households, they do indicate some patterns un-
derlying peak-time usage patterns. The early-peaking cluster, 
which is the largest contributor of the three clusters to system 
peak demand (which occurs at 5 pm), includes households 
with older occupants, more large appliances, and fewer rent-
ers. The late-peaking cluster has the highest fraction of renters 
and individuals living in flats or apartments as well as fewer 
older occupants, large dwellings, and large appliances. The 
cluster with a peak between these two has a larger share of 
high-income households and a lower share of young occu-
pants. 

Patterns in timing of afternoon and evening activities also 
show some bearing on varying peak times and usage charac-
teristics. The strongest link is found for food preparation and 
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Figure 10. Histograms of median activity time for six frequently-reported activities across load profile clusters.
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more representative sample. Data collection is on-going. There 
remain substantial opportunities to improve the effectiveness 
of demand response interventions, and we encourage more 
detailed investigations of high-resolution electricity data and 
occupant activities to ensure these deliver energy and cost sav-
ing benefits without adversely affecting vulnerable populations.
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