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Abstract
Human activities are responsible for almost 75 % of the land 
cover changes depleting the natural resources globally. These 
land cover changes with decreasing vegetation and water bod-
ies increase the heat emissions from the land surface thereby 
influencing the climate changes regionally and globally. This 
paper highlights the interaction and interlinkages between the 
land use changes due to human activities (Sustainable Develop-
ment Goal (SDG) 15) and its consequences on climate changes 
(SDG 13) using spatial analysis techniques. In this context, the 
climate change of Växjö Municipality, Sweden resulting from 
the urban development is demonstrated through LST (Land 
Surface Temperature), NDVI (Normalised Difference Veg-
etation Index), NDBI (Normalised Difference Built-Up Index) 
and land cover changes as indicators through Landsat 8 data 
of 2014, 2016, 2018 and 2020. The land cover maps prepared 
through Support Vector Machine algorithm indicate that the 
area of built-up had doubled during the study periods with de-
creasing open lands. The LST maps prepared from the thermal 
bands of the Landsat 8 data showed an increase in the mean 
surface temperature from 7.3 °C to 11.1 °C between 2014 and 
2020. The study also aims to study the seasonal variations in 
the relationship between LST, NDVI and NDBI by making use 
of Landsat 8 dataset acquired during the spring, summer, and 
autumn seasons of 2019. Results suggest a strong positive re-
lationship between LST and NDBI (0.74) whereas a negative 
relationship is found associated between LST and NDVI (0.65) 

and between NBDI and NDVI (0.71). Further the land cover 
and LST maps of 2014 and 2020 are used in the simulation of 
urban and LST maps of 2050 through Cellular Automata model 
to highlight the impact of urban development on the climate 
changes of Växjö Municipality. The simulation result predicts 
that the built-up area of 2020 might quadruple in 2050. The 
simulation analysis also predicted an increase in LST with in-
creasing urbanization in the study region. This study empha-
sises that the land cover changes in the process of urban de-
velopment is also a contributing factor for climate change in 
the study region which is evident from the increase in mean 
surface temperature (3.8 °C) from 2014 to 2020.

Introduction
Increased urbanization, resulting in rapid expansion of cities 
and metropolitan regions is one of the most important drivers 
of climatic changes globally. Three main factors influence the 
urbanization of a region including the natural increase in pop-
ulation which varies according to a region, migration of people 
to cities and gradual increase in the size of the existing cities 
(United Nations, 2018). By 2050, the global population is ex-
pected to reach 9.7 billion with 68 % of the population expected 
to live in urban areas (Sun et al., 2020). This rapid increase in 
the urbanization leads to depletion of natural resources, change 
in the climatic conditions both at regional and global level and 
degradation of quality of living of humans. Rapid urbanization 
results in the permanent conversion of large areas of cropland 
and natural vegetation to impervious surfaces thereby greatly 
modifying the land surface properties and land-atmosphere 
interactions (Qiao et al., 2020). One of the impacts of rapid ur-
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banization and urban expansion is the increased Land Surface 
Temperature (LST) of a region. Globally, deforestation, due to 
rapid urbanization, has possibly contributed to the increased 
LST and increased greenhouse gas emissions thereby impact-
ing the climate change (Aik et al., 2020). Researches on estimat-
ing the LST as an indicator for climate and ecological changes 
are widely reported. In countries located in the arctic cold zone 
including Sweden, the resources of glacial snow and frozen 
soil in the region are relatively rich, which is very important 
for the balance and stability of the ecological environment in 
the region. A large continuous increase in LST is an important 
threat to the ecological environment in this region and must be 
considered (Yan et al., 2020). Changes in the LST of a region are 
caused by the anthropogenic activities within the urban areas 
and thus it becomes crucial to monitor the effect of change in 
land use/land cover on LST to implement appropriate climatic 
mitigation measures in the region. Although the terms land 
cover and land use are often used interchangeably, their actual 
meanings are quite distinct. It is important to distinguish the 
difference between land cover and land use, and the informa-
tion that can be ascertained from them. The properties meas-
ured with remote sensing techniques relate to land cover, from 
which land use can be inferred, particularly with ancillary data 
or a priori knowledge. Land cover refers to the surface cover 
on the ground, whether vegetation, urban infrastructure, wa-
ter, bare soil or other. Identifying, delineating, and mapping the 
land cover is important for global monitoring studies, resource 
management, and planning activities. Land use refers to the 
purpose the land serves, for example, recreation, wildlife habi-
tat, or agriculture. Spatial analysis based on temporal dataset 
is required to identify the land use category of a land and to 
analyze the land use changes from year to year. 

With the availability of remote sensing based high resolution, 
multi-temporal satellite images along with the advancements 
in GIS (Geographic Information System) based spatial analysis 
techniques, studies on analyzing the effects of urban growth on 
the surface temperature of a region is gaining importance re-
cently. Land cover is the pattern of ecological resources and hu-
man activities dominating the different areas of Earth’s surface 
(Meyer and Turner, 1994). It is a critical data essential for many 
environmental monitoring and natural resources management 
applications at local, regional, and global scales (Shi and Yang, 
2015). Support Vector Machine (SVM) is a non–parametric 
classification method (Richards, 2013) belonging to the field 
of machine learning technique, which does not require prior 
knowledge of the statistical distribution of a dataset to be clas-
sified. In the recent times, SVM based classification techniques 
are gaining increasing attention in the field of remote sensing 
applications including land use/land cover classification due to 
their ability to minimize the classification errors and superior 
generalization characteristics, while solving the classification 
problems (Mathur and Foody, 2004). 

Urban growth models have been developed and extensively 
adopted to study the urban sprawl and its impact on the am-
bient environment. These models can be employed in urban 
policy making or analyses of development scenarios (Li and 
Gong, 2016). Cellular Automata (CA) models are widely used 
to model the urban growth as CA based models are found to 
perform well in predicting the urban development closer to the 
reality than conventional mathematical models (Mubea et al., 

2014). A detailed review on urban growth models based on CA 
is given by Triantakonstantis and Mountrakis (2012).

Numerous studies on the estimation of LST using Landsat im-
ageries are carried out in various countries (Meng et al., 2019; 
Srivastava et al., 2009; Qin and Karnieli, 2001). Mukherjee and 
Singh (2020) investigated the spatial and temporal changes in 
land use and patterns of vegetation and its impact on LST in two 
Indian cities. The study showed a negative correlation between 
Normalised Difference Vegetation Index (NDVI) and LST in the 
cities with increasing temperature of 2.13 °C per decade. The ef-
fects of changes in the landscape on the LST of Addis Ababa, 
Ethiopia were estimated using Landsat data (1986–2016) (Dis-
sanayake et al., 2019). The results of their study highlight that 
impervious areas dominate the study region which had major 
contribution in the increased LST which had increased approxi-
mately 4 °C during the study periods. The findings of their study 
could be useful for the decision makers to introduce sustainable 
landscape and urban planning in Addis Ababa.

According to the European Environment Agency (2021) the 
warmest year in Europe was 2014 with 2015 and 2016 closely 
joint second, and 2017 the fourth warmest year since 1850. The 
record high temperatures in 2014 were 35 to 80 times more 
likely because of anthropogenic climate change. This high 
warming has been reported particularly over southern Scan-
dinavia. In this context, the objectives of the current study is 
to analyze the impact of changes in the land cover pattern on 
the LST of Växjö Municipality, Sweden between 2014 and 2020 
using Landsat 8 dataset and to simulate the increasing urban 
growth and LST in 2050 through using CA-Markov model. The 
study also aims to study the seasonal variations in the relation-
ship between LST, NDVI and Normalised Difference Built-Up 
Index (NDBI) of the study region using Landsat 8 data of 2019 
through regression analysis technique.

Study Area
Växjö Municipality is the administrative, cultural, and indus-
trial centre of Kronoberg County, and is located in the southern 
Sweden. The study area map of Växjö Municipality is shown in 
Figure 1. The municipality is spread over an area of 1,927 km² 
with a population of 94,274 as on March 2020. Växjö Munici-
pality has a long-term and strategic environmental and climate 
work and has been called ‘The Greenest City in Europe’ since 
2007. 

Data and Methods
To simulate the urban growth and the LST of Växjö Municipal-
ity in 2050 and to identify the relationship between LST, NDVI 
and NDBI of the study region, the following datasets are used:

1.	 Landsat  8 data with 15-meter resolution acquired on 
13th March 2014, 11th April 2016, 2nd April 2018 and 6th April 
2020, available from United States Geological Survey 
(USGS) Earth Explorer (https://earthexplorer.usgs.gov/), 
are used in the preparation of land cover maps of the cor-
responding years.

2.	 Band 10 of Landsat 8 data with 100-meter resolution are 
used to derive the LST maps of the study region during the 
study periods.
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3.	 Bands  4, 5 and 6 with 30-metre resolution and Band  10 
(100-metre resolution) of Landsat 8 are used in the deriva-
tion of NDVI, NDBI and LST during the months of March, 
August, and October of 2019.

4.	 Google Earth along with field information are used in the 
validation of land cover maps of the study region.

The methodology adopted for the current study is shown in 
Figure 2. The steps involved include the preparation of urban 
maps of 2014, 2016, 2018 and 2020 from the land cover maps 
derived from the Landsat 8 data of the study region. Using the 
observed urban maps of 2014 and 2020, urban map of 2050 
is prepared through CA-Markov based simulation modeling 
technique. The Band 10 of Landsat 8 data is used in the esti-
mation of LST maps of the region. The historical LST maps 
of the study region are used in the simulation of LST map of 
2050 through CA-Markov model. Linear Regression analysis 
is carried out to study the seasonal variations in the relation-
ships between LST, NDVI and NDBI of the study region in 
2019.

URBAN MAP 
The land cover maps of the study region, prepared through 
SVM technique of supervised classification, contain four cat-
egories including Built-Up, Vegetation, Water body and Open 
lands. The current study focuses on simulating the urban ex-
pansion of Växjö Municipality in the future and thus the land 
cover maps are converted into ‘Urban Maps’ which contain 
only binary categories: ‘Built-Up’ and ‘Non-Built-Up’. The veg-
etation, water body, open lands categories were combined into 
a single category as ‘Non-Built-Up’. Thus, from the land cover 
maps the urban maps of the study region are prepared for the 
years 2014, 2016, 2018 and 2020. 

LAND SURFACE TEMPERATURE MAP
The estimation of LST using Landsat 8 data involves the fol-
lowing steps.

Calculation of TOA (Top Of Atmospheric) spectral radiance
The first step towards the estimation of LST is the calculation of 
TOA which is calculated using Equation 1.

 
 
 
 
 
 
 
 
 

 

 

 

 
 

Figure 1. Map of the Study Region.

Figure 2. Methodology adopted in the study.
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TOA = ML * QCAL + AL	 (1)

where,
ML is the band specific multiplicative rescaling factor
QCAL corresponds to Band 10 of Landsat 8
AL is the band specific additive rescaling factor

Conversion of TOA to Brightness Temperature (BT) 
The spectral radiance is converted to BT as shown in Equa-
tion 2.

	 	 (2)

where, K1 and K2 are the band specific thermal conversion 
constants. To obtain the brightness temperature value in de-
gree Celsius, Equation 2 is adjusted by adding the absolute zero 
(-273.15) value.

Calculation of NDVI
In the process of estimation of LST, the calculation of NDVI is 
important. The amount of vegetation present is an important 
factor in estimating the LST, and NDVI can be used to infer the 
general vegetation condition of a study region (Mancino et al., 
2020). NDVI, a dimensionless value, is calculated by making 
use of the red and near-infrared bands of the Landsat 8 data.

	 	 (3)

Calculation of Proportion of Vegetation (PV)
From the NDVI, PV is calculated using Equation 4

	 	 (4)

where, NDVIMin and NDVIMax are the minimum and maximum 
values of NDVI.

Emissivity calculation

ε = 0.004 * PV + 0.986	 (5)

where, ε is the land surface emissivity and 0.986 is the correc-
tive value.

Estimation of Land Surface Temperature
The final step involves the retrieval of LST using Equation 6.

	 	 (6)

SIMULATION MODELING TECHNIQUE
The simulation of built-up and LST in 2050 is carried out 
through CA-Markov model (Aburas et al., 2021; Nasehi et al., 
2019).

Urban Simulation 
The urban maps of the year 2014 (t1) and 2020 (t2) are used in 
simulating the urban growth of the study region in 2050 (t3). 
Traditional CA (TCA) model is implemented in an ArcGIS en-

vironment making use of the historical urban maps and with a 
3×3 urban neighbourhood. Based on the transition potential 
matrix (TPM) between t1 and t2, the TPM between t2 and t3 is 
calculated which highlights the expected number of built-up 
and non-built-up pixels in 2050 based on CA-Markov model 
(Aarthi and Gnanappazham, 2018). (See Figure 2.) 

Land Surface Temperature Simulation 
The band 10 data of Landsat 8 is used in the estimation of LST 
of the study region during the spring of 2014, 2016, 2018 and 
2020. The LST maps are further reclassified into four categories 
(0–14 °C; 14–20 °C; 20–24 °C; 24–39 °C). Using these reclassi-
fied LST maps and the urban maps of 2014 and 2020 the LST 
of the study region in the spring of 2050 is simulated using CA-
Markov model (Tariq and Shu, 2020) in an ArcGIS environ-
ment (Figure 2). 

RELATIONSHIP BETWEEN LST, NDVI AND NDBI
The relationship of LST with NDVI and NDBI might vary dy-
namically with the changes in the land cover patterns of the 
region and on the seasonal conditions during which the satel-
lite image is acquired (Yang et al., 2020). In the current study, to 
study the influence of changes in the seasons on the relationship 
between LST, NDVI and NDBI, Landsat 8 data acquired during 
Spring (March), Summer (August) and Autumn (October) of 
2019 are analyzed through regression technique where NDVI 
and NDBI was considered as the independent variable and LST 
as the dependent variable as LST is found to be influenced by 
changes in the vegetation and built-up (Figure 2) (Govil et al., 
2020). Data pertaining to the winter season is not utilized in 
the analysis due to the non-availability of cloud-free dataset for 
the study region. The widely used index to study the condition 
of vegetation of a region (NDVI) (Guha et al., 2018; Kumar 
and Shekhar, 2015) is implemented in the current study (as ex-
plained in Equation 3). NDVI is used to measure and map the 
density of green vegetation across a region. It is a ratio ranging 
between -1 and +1 values. Negative values of NDVI correspond 
to waterbodies whereas values closer to zero indicate barren ar-
eas of rock, sand or snow. Shrubs and grasslands exhibit lower 
positive NDVI values whereas higher positive values represent 
dense vegetation or tropical rain forest. NDBI is one of the most 
used indexes for the analysis of built-up areas. Using Landsat 8 
data, NDBI can be calculated by making use of near-infra-red 
and short-wave infrared bands of Landsat 8 using Equation 7.

	 (7)

Similar to NDVI, values of NDBI values also range between 
-1 and +1. Higher the positive values of NDBI, higher is the 
proportion of built-up and negative values of NDBI represent 
water bodies (Ogashawara and Bastos, 2012). 

VALIDATION
Validation is an important process which enables the users to un-
derstand the accuracy of the land cover maps prepared through 
classification techniques. The most common way to express the 
classification accuracy is the preparation of Error Matrix also 
known as Confusion or Contingency matrix (Fang et al., 2020). 
Different measures and statistics can be derived from the values 
in an error matrix. Overall Accuracy (OA) expressed in percent-
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age is the ratio of the sum of diagonal values to the total number 
of cell counts in the matrix highlighting the percentage of test-
ing samples that are classified correctly, whereas Kappa coeffi-
cient (k) takes the non-diagonal elements into account and is a 
measure of overall agreement of the error matrix (Rosenfield and 
Fitzpatrick-Lins, 1986). 

Results and Discussions

LAND COVER MAP
Figure  3 explains the statistics of the land cover categories 
during the study period which reveal a gradual increase in 
the built-up area with decreasing open lands from 2014 and 
2020. The area of built-up in 2014 was observed to be 28.46 km2 
which increased to 48.78 km2, 57.37 km2 and 64.34 km2 in 2016, 
2018 and 2020 respectively. The area of built-up of 2014 had 
doubled in 2020 with decreasing open lands during the study 
periods. The built-up is found to be concentrated around Tel-
eborg, Söder-Öster, Växjö city centre, Hov in the study region 
(Figure 1). The validation results of SVM based land cover clas-
sification maps of 2014, 2016, 2018 and 2020 in terms of OA 
and k are shown in Table 1. 

LAND SURFACE TEMPERATURE MAP
The LST of the study region estimated using the band 10 of the 
Landsat 8 data (Figure 2) showed considerable increase between 
the spring of 2014 and 2020 which is evident from the surface 
temperature maps of the region (Figure 4). The observed maxi-
mum surface temperature of the region increased almost 14 °C 
between 2014 and 2020 (24.91 °C in 2014 and 38.74 °C in 2020). 
It is seen that areas of built-up and open lands including Växjö 

 
 
 
 

Figure 3. Statistics of the land cover categories of the study 
region.

Table 1. Accuracy Assessment of land cover maps prepared through SVM technique for the study region.

Study Periods

Accuracy Assessment

2014 2016 2018 2020

Overall Accuracy (%) 98.73 99.93 96.70 95.61

k value 0.98 0.99 0.95 0.95

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 

Figure 4. Land Surface Temperature Maps derived from Landsat 8 data acquired during the spring of (a) 2014; (b) 2016; (c) 2018; (d) 2020.
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city centre, Teleborg, Lammhult, Braas, Ingelstad and Nobbele 
exhibit higher surface temperature during the study periods. Wa-
terbodies including Helgasjön lake, Vederslövssjön lake and veg-
etated areas in Björnamo, Kärr, Tubbatorp, Rottne show lowest 
surface temperature in the study region. This could be due to the 
fact that conventional human-made materials used in the urban 
environments such as pavements or roofing tend to absorb and 
emit more of the sun’s heat compared to trees, vegetation, and 
other natural surfaces. This analysis highlights that an increase in 
built-up area by double, has possibly increased the mean LST by 
3.8 °C between 2014 and 2020 in the study region.

SIMULATION TECHNIQUES

Simulated Urban Map of 2050
The simulated urban map of 2050 (Figure  5(e)) is prepared 
through CA-Markov model (Figure 2) based on the urban maps 
of 2014 and 2020 (Figure 5(a)–(d)). Based on the urban maps 
of 2014 and 2020, the observed TPM between 2014 and 2020 is 
calculated, which is further used in the calculation of the simu-
lated TPM between 2020 and 2050. From Table 2, it is evident 

that 28.46 km2 of built-up observed in 2014 remained as built-
up in 2020. Further, 35.87 km2 area of non-built-up observed 
in 2014 had converted to built-up in 2020 which makes the 
total observed built-up of 2020 to be 64.33 km2. Based on this 
TPM between 2014 and 2020, it is expected that the built-up 
of 2020 (64.33 km2) might remain as built-up in 2050 and ap-
proximately 10.45 % of non-built-up of 2020 corresponding to 
an area of 194.66 km2 is expected to be built-up in 2050. Thus, 
the simulated urban map of 2050 is expected to have 258.99 km2 
of built-up which is a quadruple of the built-up area in 2020.

Simulated LST Map of Spring 2050
The LST maps of spring 2014 and 2020 are reclassified into 
4 classes (0–14 °C; 14–20 °C; 20–24 °C; 24–39 °C) (Table 3). 
The simulated LST map of the study region of spring 2050 with 
four categories is shown in Figure 6. From Table 3 and Figure 6, 
it is observed that the area of the study region falling under 
the lowest LST category (0–14 °C) is decreasing between 2014 
and 2020. This decreasing trend is expected to continue in the 
future in 2050 with only 0.18 km2 remaining in this LST cat-
egory implying rapid decrease in areas with lowest surface tem-
perature in the study region. It is also observed that 294.72 km2 
of the study region had LST range between 24–39 °C in 2020 
which might increase by six times (1,654.45 km2) in 2050. From 
this analysis it could be interpreted that the built-up areas and 
the open lands of the study region which exhibit higher LST be-
tween 2014 and 2020 may get hotter in 2050 as the urbanization 
of the study region increases in the future. It is also to be noted 
that the simulation result of LST is based only on the historic 
LST maps of 2014 and 2020 which are considerably hotter and 
this could also be one of the reasons for the LST maps of 2050 
to have major areas of Växjö municipality in the highest LST 
category (24–39 °C). Thus, it becomes necessary to include the 
seasonal dataset of the past two decades to study in detail the 
trend in LST change of the study region.

INFLUENCE OF SEASONAL VARIATIONS OF NDVI AND NDBI ON LST
The seasonal variations in the relationships between LST, NDVI 
and NDBI during of the study region in 2019 is calculated as 
shown in Figure 2 and the results are shown in Figure 7 (a)–(c). 
The results suggest that there is a strong positive correlation be-
tween LST and NDBI (0.74) (Figure 7(b)) suggesting that in-
crease in built-up could possibly increase the LST of the study 
region. Negative correlation between LST and NDVI (-0.65) 
(Figure 7(a)), NDVI and NDBI (-0.71) (Figure 7(c)) indicates 
that decrease in vegetation might be one of the factors for the 
increasing LST in the study region. It is also to be noted that the 
correlation between LST, NDVI and NDBI is at the maximum 
during the summer of 2019. Thus, it could be understood that 

Table 2. Observed and Simulated transition probability matrix and its corresponding area between 2014 and 2020, 2020 and 2050.

Observed Transition Probability between 2014 
and 2020

Simulated transition probability between 2020 
and 2050

Built-Up Non-Built-Up Built-Up Non-Built-Up
Built-up 0.0148

(28.46 km2)
0 1

(64.33 km2)
0

Non-built-up 0.0186
(35.87 km2)

0.9666
(1862.69 km2)

0.1045
(194.66 km2)

0.8955
(1668.04 km2)

Figure 5. Urban Maps of the study region. Observed Urban Maps 
in (a) 2014; (b) 2016; (c) 2018; (d) 2020. Simulated Urban Map 
in (e) 2050.
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in the current study region, to study the influence of change in 
built-up and vegetation on the surface temperature, it is essen-
tial to make use of the satellite images of summer. This analysis 
highlights the fact that the relationships of LST with land cover 
indices including NDBI, NDVI varies from region to region and 
also it depends upon the season of the year and time of the day.

Conclusion
In this study, the influence of increasing urban development 
on the land surface temperature of Växjö Municipality between 
2014 and 2020 was studied using Landsat 8 data. Results sug-
gest that the area of observed built-up had doubled between 
2014 (28.46  km2) and 2020 (64.34  km2) with an increase in 
mean land surface temperature by 3.8 °C. Cellular Automata 
based modeling technique was implemented to simulate the 
urban growth and land surface temperature of the region in 
2050. Simulation results indicate that built-up area might quad-
ruple (258.99 km2) in 2050. Simulated LST map of spring 2050 
suggests that the hotter regions (24–39 °C) of 2020 might in-
crease by almost six folds (1,654.45 km2) in 2050. It is also to be 
noted that the simulated land surface temperature map of the 

 

 

 

 

 

 

 

 

 
 

Figure 6. Simulated LST Map of the study region in Spring 2050.

Table 3. Areas of LST categories observed in Spring 2014 and 2020 and expected in Spring 2050.

LST Categories (°C) Area (sq.km) of LST categories in
2014 2020 2050

0–14 1,874.73 5.39 0.18

14–20 51.60 273.53 266.87

20–24 0.35 1,353.36 5.50

24–39 0.32 294.72 1,654.45

 

 
 
 
 
 

Figure 7. Seasonal variations in the relationship between observed (a) LST and NDVI; (b) LST and NDBI; (c) NDVI and NDBI; of the study 
region in 2019.
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study region of spring 2050 is based only on the LST maps of 
the spring of 2014 and 2020. A detailed study on considering 
the LST changes making use of seasonal data of past 20 years 
is necessary to study the pattern of LST changes in the study 
region. Further, the analysis on the seasonal variations on the 
relationship between LST, NDVI and NDBI made use of only 
the spring, summer, and autumn data of 2019 due to the non-
availability of winter dataset of 2019. Hence, for a better under-
standing of the influence of changes in NDVI and NDBI values 
on the LST of the study region, it becomes crucial to include all 
the seasonal datasets in the analysis. 

In this study, traditional cellular automata-based model by 
making use of only the historical urban maps of the region are 
used in the simulation process. However, when parameters in-
cluding the population density, transportation network, con-
straints including areas where urbanization is restricted includ-
ing areas closer to waterbodies, ecologically sensitive areas and 
so on, are included in the cellular automata model, the predic-
tion analysis would depict the urban reality with higher accura-
cy. Further, implementing and validating the cellular automata 
model along with various factors of urban development for the 
current time period would enable the futuristic prediction re-
sults more reliable. Considering the dual nature of the relation-
ship between land use/land cover and the climate change, the 
impact of changing climatic conditions on the land cover pat-
terns is to be studied which could provide a better understand-
ing on the interlinkage between climate change and land use/
land cover of the region. A thorough study on the urban growth 
trend and its impact on the increasing surface temperature of 
the study region with the past two decadal datasets is necessary 
to provide a clear understanding of the consequences of urban 
development on the surface temperature of the region. In any 
case, this study is a step forward in the direction of analyzing 
the impact of surface temperature on the global climate change 
due to the urban development patterns which would enable the 
local governing authorities to devise appropriate urban plan-
ning strategies so as to minimize the impact of urban growth 
on the thermal environment of the municipality.
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