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Abstract
The desire to increase the use of renewable energies, reducing 
the environmental impacts of energy use, has the potential to 
create stability problems to the electric grid. As part of the solu-
tion, demand response programs may play an important role 
by providing part of the flexibility needed to adapt the now 
variable supply to the variable demand. However, not all types 
of consumers have a natural capability to offer significant load 
change, namely residential consumers, even if considering their 
aggregation. However, the use of battery storage combined with 
the management of loads and eventual self-generation devices 
may provide enough flexibility to give small consumers a pos-
sible role in supporting the grid.

The objective of the work here described was to optimize 
the scheduling of user appliances and battery storage charging 
and discharging to respond to real-time price schemes and the 
eventual availability of self-generation, while limiting the dis-
comfort for the consumer. An analysis was made of two pos-
sible real-time price schemes, one following the actual varia-
tions of the Iberian wholesale market, still strongly dominated 
by thermal power plants, and another inversely following the 
variation of renewable generation in Portugal.

The results show that, although with present conditions only 
the maximization of the usage of self-generation may justify 
this type of control, a future power system dominated by vari-
able renewable generation will probably lead to many situations 
in which load flexibility can be paid enough money to make 
this kind of system cost-effective.

Introduction
The management of a Power System, balancing supply and 
demand is one of the most challenging issues. Nowadays cli-
mate change, energy security, and limited fossil fuel resources 
are driving the grid to increasingly integrate renewable energy 
sources (RES) such as photovoltaic panels (PV) and wind tur-
bines (WT) into the modern power grid, considering also the 
improvement of costs.

The International Energy Agency (IEA) published the World 
Energy Outlook in 2013, where an important increase in the 
share of variable RES in total electricity generation is predicted, 
growing from 6.9 % in 2011 to 23.1 % before 2035 inside the EU 
(International Energy Agency, 2013). The relevance of build-
ings in the global total final energy consumption of the world 
is also reported to represent about 32 %, corresponding to 40 % 
in terms of primary energy in most IEA countries, and 65 % of 
the total electric consumption (International Energy Agency, 
2013). Moreover, according to the Eurostat1 statistics reported 
in 2018, households are the second most relevant category in 
terms of final usage of energy in the EU, accounting for 26.1 % 
of the total consumption.

However, the growth of zero-carbon renewable based gen-
eration, variable by nature, will present major challenges to the 
operation of transmission and distribution networks in terms 
of voltage/frequency control and power flow management (Ly-
ons et al., 2010). This requires the adoption of new technolo-
gies, as smart metering and communication systems, to help 
matching the availability of supply to the demand of consum-

1. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics 
_-_an_overview#Final_energy_consumption
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ers, ensuring electricity security, affordability and efficiency 
(Khan and Khan, 2013).

Under these circumstances, the concept of Demand Re-
sponse (DR) has been seen as a possible source of flexibility, 
consisting in inducing the demand-side to change their nor-
mal consumption profiles through dynamic changes of price 
over time or incentive payments, according to the needs of the 
power electric system (Federal Energy Regulatory Commis-
sion, 2012).

Electrical energy storage (EES) systems are another impor-
tant solution increasingly used besides DR to supply the flex-
ibility needed for variable renewable energy applications, lead-
ing to the recognition by the European Commission as one of 
the crucial technologies for the future smart grid, able to sup-
port the grid with different services, as frequency control or 
price arbitrage and as well the capability of contributing peak 
shaving and energy cost reduction (Kousksou et al., 2014; Yao 
et al., 2016). EES also allows maintaining the same comfort and 
consumption patterns, if properly managed, while improving 
the integration of RES, e.g., by storing excess production (Zhao 
et al., 2015).

This paper presents a household energy cost minimization 
through a mixed integer non-linear programming (MINLP) 
model designed for scheduling appliances and battery opera-
tions inside a house context, where the energy supply comes 
from a PV panel and grid connection, but without the capa-
bility of selling energy back to the grid. The work is based on 
the approaches followed by Setlhaolo and Xia (2015) and Yahia 
and Pradhan (2018) which aimed to optimize the operation of 
a set of appliances under time of use (TOU) tariff rates, without 
considering differences related to seasonality, one of them also 
considering the presence of battery storage. The model is ap-
plied to a case study representing a single household, but in this 
case considering a real-time price scheme (RTP), different solar 
conditions and willingness to different levels of discomfort. 

The remainder of this text is structured as follows. The fol-
lowing section presents a brief literature review referring the 
concept of Demand-Response, the operation of Home Energy 
Management Systems, the role of energy storage and a list of 
related works regarding the optimization of demand response 
and storage systems. The third section presents the proposed 
methodology, summarizing the implemented optimization 
model. The fourth section describes the case study, includ-
ing the definition of two real-time-price datasets, one based 
on the actual Iberian wholesale market, and another on the 
availability of renewable generation. The fifth section presents 
the results of the model and, finally the last section presents 
conclusions.

Literature review

DEMAND RESPONSE
The Federal Energy Regulatory Commission (2012) defines 
DR as “changes in electric usage by end-use customers from 
their normal consumption patterns in response to changes 
in the price of electricity over time, or to incentive payments 
designed to induce lower or higher electricity use at times of 
high or low wholesale market prices or when system reliability 
is jeopardized”. 

The original objective of DR was to make the load follow 
the generation in order to make the system more efficient eco-
nomically, aiming to avoid having too much idle grid capac-
ity or having to start expensive generation, but its goals were 
extended to deal with variable generation (U.S. Department of 
Energy, 2006).

DR is one of the main strategies to be promoted in order to 
guarantee security and supply of the grid and can be divided by 
the way in which consumption shifting is stimulated: incentive-
based and price-based. Incentive-based DR consist in motivat-
ing the customers through incentives or rebates, which are 
based on the needed electricity usage change calculated a priori 
and offered by the local operator. In this type of DR, customers 
may be subject to financial penalties if they fail to participate 
or reach the load change required, usually a reduction (Zhang 
and Li, 2012).

An example of incentive-based is the direct load control 
(DLC) of air-conditioners (ACs) within the residential sector, 
directly making possible to change the thermostat temperature 
set-point or to manipulate on-off cycles during peak times. 
Many other different typologies are available as curtailable 
load, which consists in discounts for reducing the load during 
contingences periods, and demand bidding or buy back, where 
customers offer bids to curtail according to wholesale electric-
ity market.

On the other hand, a price-based DR can be implemented 
as a manual control of loads if made by customers or an auto-
matic control if it’s entrusted to Energy Management Systems, 
in response to time-varying prices as time-of-use rates (TOU), 
critical peak pricing (CPP), inclined block rating, and real-time 
pricing (RTP) (Zhang and Li, 2012). These solutions leave up to 
the customers to reduce usage of energy-intensive appliances 
during periods of high prices or shift usage to a different time, 
such as waiting for the use of high consumption appliances un-
til the peak period is over.

The efficiency of a rate is larger, the shorter is the updating 
period (Q. Zhang and Li 2012). According to that, TOU being 
a pre-determined solution varying only in the long term or sea-
sonally cannot help further to reduce the demand, in particular 
when the system is under shortage of capacity. RTP schemes, 
which are more dynamic with price updating periods of one 
hour or less, can come to aid and better reflect these issues, ef-
fectively strengthening the link between wholesale and retail 
markets (Faruqui and Sergici, 2010; Federal Energy Regulatory 
Commission, 2012).

To have an adequate response time to RTP, the rates are usu-
ally given a day-ahead or some hours ahead, so the customer 
can act and make the needed adjustment according to the pric-
es previously communicated (Barbose et al., 2004). According 
to Borenstein (2005), RTP represent a greater reflection of the 
marginal costs of supply, becoming economically attractive, 
and allowing more benefits for both the utilities and customers, 
as peak load reduction and greater bill savings, with TOU rates 
obtaining only 8 % to 29 % of the benefits of RTP.

HOME ENERGY MANAGEMENT SYSTEMS
Smart home appliances are very important to get the most of 
energy management systems in residential houses, (Zhao et 
al., 2013). Some existing home appliances can be made “smart” 
with the addition of remotely controlled switches and even 
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sensors and controlling microprocessors, but there are already 
smart appliances being produced, like refrigerators which al-
low users to interact through a tablet or mobile phone (Zhao 
et al., 2013).

Home Energy Management System (HEMS) are important 
tools to perform the control, scheduling and optimization of the 
electricity usage, including various in-home appliances, apply-
ing different algorithms and models usable, depending on load 
types and requirements of DR programs available. A HEMS is 
a fundamental piece in the role of achieving automated house 
DR programs, as customers cannot be always monitoring and 
acting when needed as it would be required to implement DR 
manually. An effective HEMS should provide the needed DR 
operations with the least impact on customer lifestyle. A pos-
sible methodology to evaluate the impact of the deployment of 
such systems was proposed by Miguel et al. (2014).

Such a system placed in a residential home should be able 
to communicate with the appliances and utilities, receive pric-
es information and then manage and reduce the power con-
sumption according to an optimal scheduling of appliances 
(Shareef et al., 2018). Specified set of requirements expressed 
by the individual customer would be take into account for the 
operations and optimizations, in order to maximize the qual-
ity of service. The main controller device can be implemented 
around smart meters, taking profit of the measuring capabili-
ties as well as the capabilities of communicating with the utili-
ties (Lee et al., 2011).

A typical HEMS is composed by a personal computer or a 
single-board computer, a smart meter connected with wired or 
wireless communication devices in order to coordinate, receive 
and send data from utility to the appliances of the smart house 
and an in-home display for visual communication with the user 
(Shareef et al., 2018). Depending on the power architecture in 
smart home and objectives need to be met, different HEMS can 
be developed to ensure the optimal energy utilization and opti-
mal energy sustainability (Yao et al., 2016).

ENERGY STORAGE
Energy storage systems have a fundamental role to fully inte-
grate renewable energy sources, due to their variable nature, 
frequently not aligned with the typical demand, implying lack 
of availability at certain times of the day and excessive avail-
ability in others. With EES it is possible and profitable to supply 
a system with 100% RES, even on off-grid systems (Zhao et al., 
2015). EES can stabilize the power grid with a high penetration 
level of RES and so facilitate them to become completely reli-
able as a primary source of energy (Díaz-González et al., 2012).

The growth of capacity in EES coupled with a large amount 
of application opportunities led to a rapid development of EES 
technologies. Different benefits can be obtained in terms of 
environment and supply security thanks to the RES expansion 
accompanied by the peak shaving of demand profile. This re-
duced the need to resort to conventional thermoelectric gen-
erators to compensate supply and demand variations (Zheng 
et al., 2018). Some manufacturers started to promote electricity 
storage for individual homes, e.g. Tesla Powerwall® batteries, 
and the use of electric vehicles’ (EV) batteries for this purpose 
has been also suggested as a way to improve system flexibility 
and supporting local peak power and energy demand (Zheng 
et al., 2018).

The energy demand of a typical residential consumer in-
cludes different types of loads: inelastic, as lighting, TV, com-
puters, refrigerators and cooking appliances which have the 
highest priority, being considered essential for the user’s com-
fort, and elastic loads that can be easily rescheduled thanks to 
higher flexibility and/or lower importance. Typically, HEMS 
control the later type, to avoid conflicting with the user comfort 
levels, but this reduces the amount of flexibility to offer. In this 
context, energy storage systems can act as a tool to transform 
any kind of load on a controllable load, acting as an uninter-
ruptible power supply (UPS). With a properly sized battery, the 
demand of a whole house could be traded as a flexible load with 
minimum nuisance to the users (Bayram and Ustun, 2017). 

RELATED WORKS
A wide range of research has focused scheduling problems in 
HEMS. Nirmalya Roy et al. (2006) showed that an intelligent 
algorithm integrated into the HEMS and based on the game 
theory was able to improve the comfort level while reducing 
the energy consumption, thanks to the tracking of the activi-
ties. Yu et al. (2013) proposed a hybrid genetic particle swarm 
optimization to schedule the energy consumption of appli-
ances in HEMS with the integration of RESs. Boynuegri et al., 
(2013) presented an algorithm based on the battery state of 
charge level and RES, while using multiple tariffs, being able to 
integrate them for a scheduling of the appliances and demand 
reduction. Z. Zhao et al. (2013) proposed a generic algorithm 
(GA) to optimize the operation of a HEMS in the presence of 
RTP and inclined block rate, in order to reduce electricity cost 
and the peak-to-average-ratio (PAR) factor, being PAR an indi-
cator of instability of the grid. Terci Flores et al. (2016) present-
ed another GA based work for the residential sector presents 
a model for energy optimization considering the presence of 
distributed generation, time-differentiated prices, and prefer-
ence of loads. Nguyen, Song, and Han (2015) proposed a man-
agement of appliances energy consumption in the residential 
sector, considering RTP and distributed energy sources, using 
fractional programming. Di Somma et al. (2018) developed 
a stochastic programming model for the optimal scheduling 
of distributed energy resources, aiming to reduce energy cost 
and CO2 emission, satisfying time-varying user demand in the 
meanwhile. Ma et al. (2016) categorized the different applianc-
es and considered the uncertainties related to different kind of 
loads, when aiming to minimize costs, using a day-ahead pric-
ing scheme (Ma et al., 2016). Another study using day-ahead 
prices use a hybrid technique named teaching-learning genetic 
optimization to solve the optimization problem of reducing 
electricity cost at minimum user discomfort (Manzoor et al., 
2017). Rasouli et al. (2019) compared two different methodolo-
gies, a mixed-integer linear programming (MILP) model and a 
metaheuristic (genetic algorithm) to use on a HEMS, aiming 
to integrate energy resources under dynamic tariffs. Gonçalves 
et al. (2019) proposed a model considering two types of power 
cost scenarios.

Methodological proposal
The configuration of the system to study is shown in Figure 1, 
where a household is supplied by its own PV generation system 
and by the main grid, and there is a battery system which can 
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be charged and discharged when necessary. The main objec-
tive is the energy cost reduction of the household. The house-
hold is considered to be participating in a DR load scheduling 
program with RTP scheme, meaning that inside a certain time 
window chosen by the user the appliances can be rescheduled 
to profit from the variations in RTP.

Following the works developed by Setlhaolo and Xia (2015) 
and Yahia and Pradhan (2018) an algorithm is developed that 
can be implemented by the controller of the system. The algo-
rithm intends to minimize the cost to the user while keeping in 
consideration the discomfort in which the user can incur. This 
implies considering the characteristics of the appliances, the PV 
panel system and BS system, as well as the parameters decided 
by the user. Based on the day-ahead data regarding user param-
eters, solar forecasts and prices, the algorithm is implemented 
to obtain the optimal scheduling of the individual components, 
as for example the optimal period for charging and discharging 
the BS system, in order to obtain the higher benefits.

All the components of the system are subjected to certain 
constraints, as keeping the state of charge of the battery inside a 
certain range or respecting dependences and forced sequences 
regarding the operation of appliances, making the problem a 
Mixed Integer Non-Linear Programming (MINLP) problem. 

The main grid is considered to be only an energy supplier 
component, thus excluding the possibility of being able to re-
ceive or to value the energy produced in excess or at advan-
tageous times to the supplier. This possibility is excluded, as 
we intend to develop a model that strictly optimizes the use of 
the battery inside the home, excluding the possibility of fur-
ther stressing it to obtain further small savings at the expense 
of greater degradation, and assuming the current trend towards 
self-supply.

To achieve the objectives, a function of minimization of the 
different day-ahead costs is implemented. The function aims to 
minimize the cost of the power purchased to the grid (CostGrid) 
and the cost of the weighted scheduling inconveniences (CostI). 
CostGrid is in turn composed by the cost of supplying the appli-
ances in the house (CostHousehold) directly from the grid, the net 
cost of charging the battery (CostBS) to which the cost saved due 
to the PV panel power produced (CostPV) is subtracted.

The optimal scheduling is based on user preferences, which 
are the desired use of each appliance (start and stop time) and 
a time window within which it is possible to operate the appli-
ance. This time window represents the flexibility for operating 
the appliance and the wider the appliance operating time win-
dow, the greater will be the flexibility.

A MINLP mathematical model is described in Box 1 in order 
to handle this problem, assuming data series with T/Dt values, 
for a study period T and Dt a fraction of the time unit.

In order to evaluate the developed model, different scenarios 
for using a battery unit and a DR program were implemented, 
with and without the consideration of a PV panel, in order to 
analyse if the usefulness of storage depends on the existence 
of self-generation. Multiple different values of δ were used in 
order to see whether the higher willingness to accept discom-
fort significantly affect the cost reduction. The model was also 
applied to periods of the year, where the availability of differ-
ent solar radiation and different types of loads conditionate the 
choices, in addition to the relative different prices, reflecting 
the changing availability of all renewable sources in different 
months.

The model is a day-ahead optimization model, which means 
that it is based on different parameters and forecasts made for 
the following day, namely for the PV power production, the 

 
 

Figure 1. Configuration of the studied system.
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  RTP(t): energy price at the instant t.

  δ is the relative importance assigned to the inconveniences

  PBS(t): Net Battery demand power

  “Ch”: charging; “Dis”: discharging

 PUnc(t): power of uncontrollable loads; Pi(t): Rated power of 
appliances

 I: Inconvenience factor

  : Optimized schedule of appliance i

 PPV(t): Power generated at PV panel;  : Instantaneous  
irradiation; Ga,0: Standard irradiation;   : temperature co-
efficient;  : temperature; TM,0: temperature at standard 
conditions; NOCT: Normal operating temperature.

  : Maximum demand at any time.

 Constraint to assure self-supply

 Di: Appliance i cycle duration; ki: Time adjustment flexibility 
parameter

  ei: end of cycle of appliance i; si: start of cycle of appliance i

   : indicator of uninterrupted operation:  
1 = cycle completed at time t.

 

 

  Allows more than 1 cycle per appliance

  Constrains dryer to the WM operation

   ; for breakable cycles

  SoCBS(t): state of charge; ηCh: efficiency of charging;  
 ηDis: efficiency of discharging; Etot: Total energy storage capability

  SoCmin and SoCmax: Assumed limits for SoC

   : Imposed limit for charging power

   : Imposed limit for discharging P.

Box 1. A MINLP mathematical model assuming data series with T/Dt values, for a study period T and Dt a fraction of the time unit.
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precision of which may affect the result. The mismatch between 
the forecast and the real production is satisfied by purchasing 
the missing amount from the grid or injecting the excess pro-
duction in the grid without a reward for it, thus representing 
a worst-case scenario. As a result, there will be a potential dif-
ference between the amount of expected savings calculated a 
day-ahead and the real amount of savings obtained. 

The evaluation of results focusses:

• The amount of expected savings obtainable, according to the 
different characteristics of the scenarios.

• The amount of participation of the BS system to produce 
savings.

• The possible order of magnitude of the disparity between 
expected savings and real savings.

• The analysis of the sensitivity of results to the variation of 
δ values.

• The factors which appear to exert a strong influence on the 
performance of the algorithm.

Case study
For the PV forecasts, the house to control is considered located 
in Leiria, Portugal. The system is connected to the grid and 
contains a PV power plant, a HEMS which manages the house-
hold energy flow and the BS unit scheduling to better reduce 
the energy demand cost. Moreover, the consumer participates 
in a real time price-based demand response program imple-
mented by the electricity supplier.

The usage of the BS unit is explored considering the season-
ality of PV power generation and of the price variation, as well 
as different values for a parameter (δ) representing the allowed 
inconvenience. It also taken in consideration different maxi-
mum values of demand limit, in order to evaluate the changes 
occurring for this limitation.

The different components of data were defined based on 
datasets of house load demands, of appliance load profiles, PV 
and other renewable generation data, and wholesale market 
hourly electric prices.

HOUSEHOLD APPLIANCES
Being a generic case, with the aim of testing the optimization 
model, the set of appliances was defined based on a monitor-
ing study conducted in the Netherlands (Uttama Nambi et al., 
2015). In addition, some commonly used appliance consump-
tion profiles were obtained from measurement campaigns in 
Portugal to which the authors had access.

The appliances were divided in two categories of usage: un-
interruptible and interruptible, the former mandating the com-
pletion of any started cycle without interruption, and the latter 
allowing the operation to be interrupted, on the condition that 
the total duration of the cycle is respected. The category of in-
terruptible appliances included the air conditioner and the car 
charger, due to the possibility of interrupting the operation cy-
cle without noticeable differences in the perception of the user. 
The same could have been done for electric water heaters with 
hot water storage, which profit from thermal inertia. However, 
for simplicity reasons, the water heater demand was considered 
instantaneous.

Figure 2 depicts the reference load profile of the household 
assuming the load profile which was used for all the experi-
ments for simplification reasons, even if the load profiles of 
certain loads, as AC, are for sure not the same during the whole 
year.

SELF GENERATION AND STORAGE
The household was considered to have its own renewable power 
production system based on solar PV panels, using the silicon 
crystalline technology, with a peak power of 3 kW. The system 
characteristics were defined assuming the default characteris-
tics of PVGIS2 for Leiria, namely 34 º slope, 9 º azimuth and 
system losses of 14 %. The generation time-series was obtained 
from PVGIS. The difference between two consecutive days was 
used as an estimate of the possible mismatch between forecasts 
and actual generation.

The battery considered assumed the data values for the Tesla 
Powerwall 2, according to the available technical specifications. 
However, the Depth-of-Discharge (DoD) used for the model 
was limited to a maximum of 80 %, below the maximum speci-
fied by Tesla, to reduce the degradation of the battery, following 
recommendations regarding the impact in the lifetime of bat-
teries (Wu et al., 2017).

RTP DATASETS
In the absence of existing RTP schemes for residential custom-
ers in Portugal, the price values datasets used to assess the de-
veloped model were created from two different hypothesis, one 
based on the Iberian wholesale market of 2019 and one based 
on the renewable energy availability in Portugal in the same 
year. The second model intends to forcefully represent the de-
pendence of future RTPs on renewable energy production, due 
to the expected greater expansion of RES in the country, fol-
lowing the European target for the whole electricity production 
to be covered by renewable sources in 2050 (RNC2050, 2019). 
The current market price already accounts in part for the RES 
variability, but it is still smoothed by the significant share of 
thermal-based energy generation. As the current objective of 

2. https://ec.europa.eu/jrc/en/pvgis

 
 

Figure 2. Initial load profile.
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DR is to allow for an increased integration of renewables, the 
true value of the system proposed must be assessed with RTP 
that more accurately reflect what would be the electricity gen-
eration cost dynamics in such a situation.

The first model was obtained by scaling data collected from 
the Iberian Electricity Market Operator3 (OMIE), the operator 
of the market where electrical companies in Portugal and Spain 
perform trade, so that the average price equals the average price 
to residential consumers, €0.2150/kWh, including taxes, ac-
cording to EUROSTAT4 (Figure 3).

The second was created based on data provided by the Por-
tuguese System Operator (REN) regarding renewable energy 
production5, scaling the inverse of the hourly solar and wind 
energy also to the average price to residential consumers (Fig-
ure 4).

As the model implemented relies on daily operations, a few 
days were selected to represent the most relevant cases, namely 
RTP daily profiles relatively flat and daily profiles with signifi-
cant variations. Examples of the choices for the first dataset are 
depicted in Figure 3b), while for the second choices are shown 
in Figure 4b), the second case resulting in much larger varia-
tions, reaching close to €1/kWh at the evening in October.

3. https://www.omie.es/en/file-access-list#Day-ahead%20MarketPrices?parent=Day-
ahead%20Market

4. https://www.dgeg.gov.pt/pt/estatistica/energia/precos-de-energia/precos-de-
eletricidade-e-gas-natural/

5. https://www.mercado.ren.pt/EN/Electr/MarketInfo/Gen/Pages/default.aspx

Application of the optimization model
The proposed MINLP model was solved on a PC with a 1.99 
GHz Intel Core i7-8550U CPU of 8th Generation with 16 GB 
of RAM, running under Windows 10, with MATLAB R2020 
through the OPTI toolbox.

The execution time averages to 7.5 seconds, with a minimum 
of 5.6 and a maximum of 13.5. The time normally increases for 
higher values of inconvenience allowed, defined through a low 
value for δ, due to a larger number of combinations.

The model was applied to example days with high and low 
variation of prices, in both datasets, for the months of Janu-
ary, April, July and October, with and without considering 
the existence of the PC panel, in a total of 32 cases. Results 
show that, with the exception of the case without the con-
tribution of the PV panel when considering the RTP dataset 
that reflects the current wholesale market variations, all the 
remaining cases result in significant savings, reaching a maxi-
mum of 88 % for a day of high variation in prices in October, 
when considering the RTP dataset following the availability 
of renewable sources, and in almost all cases it is possible to 
achieve almost maximum savings without assuming signifi-
cant inconveniences. 

The contribution of the battery to the savings is in almost all 
cases quite significant, from a minimum of 31 % to a maximum 
of 91 % on the cases with PV. The contribution of load shifting 
could also be nonetheless relevant, reaching 31 % of the savings 
on the case without PV, in October, for the RES based RTP.

 
 

 
 

Figure 3. Hypothetical RTP based on the MIBEL wholesale prices (€/kWh). a) Whole year; b) Selected days.

Figure 4. Hypothetical RTP based on the availability of RES (€/kWh). a) Whole year; b) Selected days.
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Figure 5 shows the optimal scheduling obtained for a day in 
January, when considering PV and the RES based RTP scheme, 
and assuming no elasticity for loads. It is visible the use of the 
grid mostly for charging the battery and supplying the evening 
load, and the use of the battery to also benefit from the excess 
PV production during the day, in order to supply the load dur-
ing the remaining time.

In this case, the scheduled operation resulted in the grid di-
rectly supplying only 30 % of the load, 26 % coming directly 
from the PV panel and the remaining 44 % from the battery, 
39 % of which charged by the PV panel and 61 % by the grid 
during low price hours.

Conclusions
The need for decarbonizing the electricity production sector 
led to the rapid expansion of renewable energy production, but 
the electricity generated by these primary sources is extremely 
dependent on their fluctuations, therefore implying difficult 
constraints to the power system. The daily significant variations 
of the solar and wind-based generation as well as the deep sea-
sonal variations of hydropower create a significant variability of 
the supply which adds to the natural variability of the demand, 
increasing the complexity of finding the essential instantaneous 
balance which is an absolute requirement for the operation of 
the power system. 

Therefore, new solutions are required to grant the reliabil-
ity to the power system it usually had when the availability of 
supply could be accurately planned. The future power system 
needs sources of flexibility to be able to match demand and 
supply and energy storage systems and demand-response pro-
grams are being developed with such ambition.

The main objective of this work was to implement an opti-
mization procedure, based on day-ahead forecasts of real-time 
prices and solar generation, to schedule the use of appliances 
and battery management actions, analysing a possible result of 
a DR scheme in which a residential customer would partici-
pate using not only the ability to shift the usage of appliances, 

but also energy storage and energy self-generation abilities. To 
analyse the magnitude of the results for different possible real 
time price schemes, two different hypotheses were used to gen-
erate hourly prices which a residential user could be subject to, 
one using the actual Iberian wholesale market as a source of 
variation, the other using the availability of RES. Both schemes 
produced a wide range of different situations, from a flatter 
daily profile of prices to a highly variable daily profile, the lat-
ter stressing the importance of such HEMS to control demand 
shifting for residential customers. The situation was analysed 
with and without the contribution of self-generation obtained 
from a PV production system, considering also its variability 
according to simulation data. 

Although not intending to make general conclusions from 
a single case, the results allow for some comments. As an ex-
ample, the application of an RTP scheme based on the current 
variations in price observed in the Iberian wholesale market led 
only to small profits when not considering the PV generation, 
but increased significantly when considering a small PV pro-
duction, and then reached significant cost savings (circa 70 %) 
in periods of high solar generation. However, when applying a 
RTP scheme based on the fluctuations of RES, which produced 
much higher variations in price, the results improved consider-
ably, reaching cost savings as high as 85 %.

In detail the model shows that to obtain an interesting quanti-
ty of savings, sufficient to be advantageous against the inconven-
ience cost, a significant magnitude of price difference or a high 
quantity of solar energy production are needed. With a small 
PV production, when the price profile becomes more variable 
during the day due to relative higher and lower maximum and 
minimum peaks, the expected savings increase significantly, 
only requiring a small increase in the level of discomfort, as in 
fact the inconvenience cost tends to decrease. In addition, if the 
solar production becomes high, the savings reach maximum 
values with a high participation of the battery.

The second model of RTP implemented shows the true rel-
evance of DR and EES, producing meaningful savings even 
without PV production. This case represents the objectives for 

 
 Figure 5. Optimal schedule for January, with PV and the RES based RTP.
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this type of HEMS as a way to create flexibility to cope with 
the higher variation of supply costs following the scarcity or 
abundance of supply. But, with additional PV generation, the 
obtained value is even higher in the perspective of the indi-
vidual customer, allowing for the maximization of the use of 
such an investment. As an example, there is a case in the month 
of October when a sudden variation of RES availability leads 
to price variation from a very low value to a peak, to which the 
optimization model responded with an adequate scheduling of 
the battery, making this event a noticeable source of income 
instead of a possible cause of energy bill increase.

To conclude, it is assumed that the present work had some 
limitations, namely regarding the modelling of appliances 
which were simplified. Future works on this subject should aim 
for improvements, e.g.:

• To implement thermal models for requiring appliances, as 
for example the electric water heater with a water tank, in 
order to better represent the role of thermal inertia. The 
same concept can be done for the air conditioner, control-
ling the room temperature in relation with the settings of 
the user. These solutions should permit a more realistic 
model of the consumptions.

• To use a dynamic model for the EV battery charging, con-
sidering also the possibility of using also this battery as part 
of the house flexibility sources.

• To improve the control of the charging/discharging cycles in 
order to minimize battery degradation.
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