

eceee 2022 Summer Study on energy efficiency 6 – 11 June

agents of CHARGE

D.Osso, N.Chatagnon, M.Berthou, H.Bosche, C.Dronet, J-M.Lauruol - EDF Lab / TREE A.Orcibal - EDF ICRS / BI E.Gasparotto - EDF Marketing / DSEF

From Energy efficiency obligation to carbon savings certificate to achieve carbon neutrality: does it fit the path?

June 2022

Introduction – some European targets in constant evolution

Long-term strategy (2050):

- carbon neutrality (Green Deal)
- decarbonisation of the building stock (EPBD)

Mid-term strategy (2030):

- > 36% of **final energy** and 39% **primary energy** savings (Climate Target Plan)
- > 39% for final energy, 42% for primary energy and 55% of renewables (Fit for 55)
- -55% of GHG (Green Deal)
- zero-emission in new buildings (EPBD)
- -61% GHG emission (EU-ETS)
- > 32% of **renewable** in final consumption (RES)
- After 2024, 1,5%/yr. of final energy savings (article 8) (EED)*

one target, one scheme?

*EED 2021 proposal

2

Energy Efficiency Obligation (EEO)

European EEO scheme: where is the carbon?

Energy efficiency incentive & tax price

Primary principles of an EEO scheme

Unit of savings

- EEO Certificate 1,000 h Wh
- Global obligation level to define the amount of savings to be achieved during a defined period
- Obligated parties (utilities DSO or retailers) which share the target to be achieved
- Portfolio of eligible actions to be implemented
- Control process to deliver EEO certificate as a means of accounting for savings
- Penalty in case of non-compliance
- Cost recovery mechanism to finance the EEO scheme

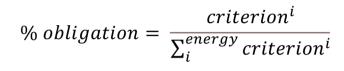
→ 3 Calculation of savings

2 Calculate the allocation —

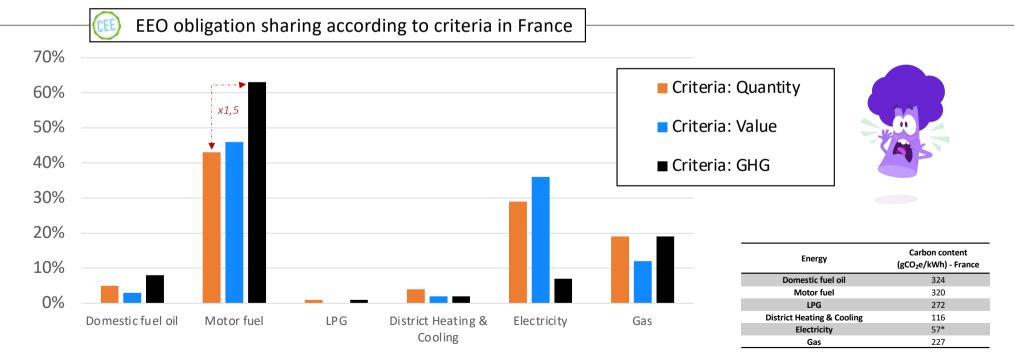
1 Defining the unit of the EEO obligation

Unit example:

Primary energy (toe) (Italy, Poland)
 Final energy (PJ in Denmark, TWh in France)
 Carbon dioxide like in CERT in UK


Bill savings like in ECO in UK

UK example:


- Final energy: Energy Efficiency Standards of Performance (EESoP 1994-2002)
- Final energy with carbon weighting: Energy Efficiency Commitment (EEC 2002-2008)
- GHG: Carbon Emissions Reduction Target (CERT 2008-2012)
- Bill savings: Energy Company Obligation (ECO 2013-2022)

2 The path of least resistance: sharing the obligation

with criterion:

✓ Quantity [kWh]
 ✓ Value [price (€/kWh)*quantity (kWh)]
 ✓ GHG [quantity (kWh)*carbon content (kgCO₂/kWh)]

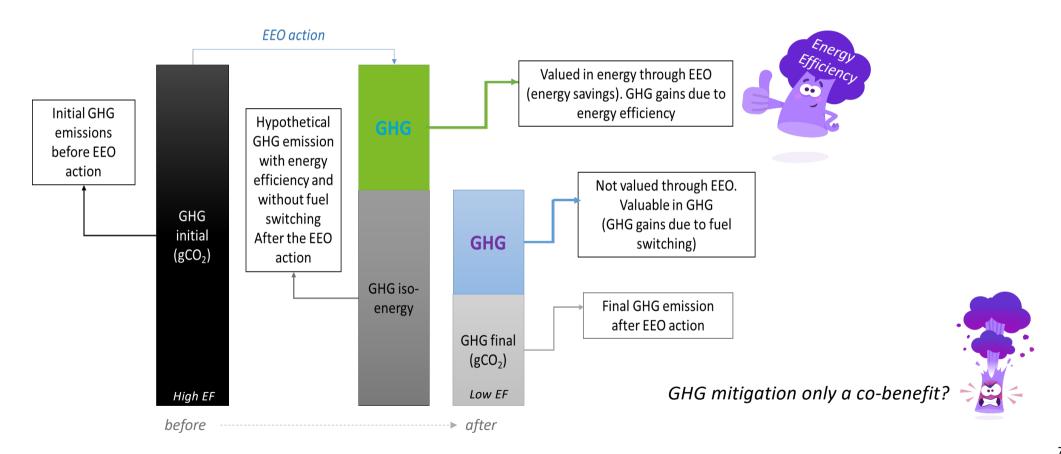
41-79 gCO₂eq/kWh according to end-uses

5

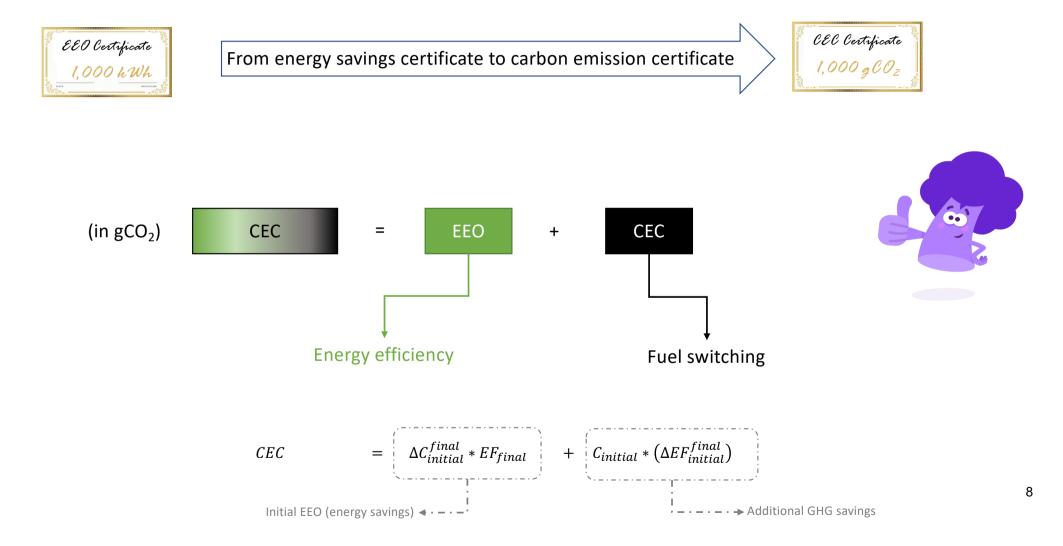
3 Choose the eligible action and calculate the savings

- Differentiating the energy savings by energy carrier:
 in France, no difference in certificates between energies
 in Italy there are 4 different types of certification
- EEO certificate is directly proportional to GHG mitigation

« Stick and carrot » approach to fossil and low-carbon measures



- Prohibit the eligibility of even the most efficient fossil fuel technologies
- Cap the maximum number of fossil fuel technologies
- Bonus to encourage low-carbon measures
- Minimum target of a number of measures



Choice of actions to steer the market towards the more GHG efficient measures

Valuation of GHG mitigation through fuel switching and energy efficiency

The narrow path of coherence: carbon emission certificate

Carbon emission certificate: exploitable certificate potentials in France with energy switch

Industry:

- Electric furnaces: energy savings: 20% 50% \rightarrow carbon savings: 85 to 90%
- Heat pumps: energy savings: 75% \rightarrow carbon savings: 96%
- Mechanical Vapour Compression: energy savings: 78% \rightarrow carbon savings: 97%

Transportation:

- Ship to shore connection
- Start and stop locomotive and dual mode locomotive
- Efficient vehicle (EVs)

Buildings:

• Heat pump : energy savings: 74% \rightarrow carbon savings: 94%

Conclusion: The carbon, the energy and the EEO

- Carbon neutrality requires both a sharp reduction in energy consumption and a response to the remaining consumption with low carbon energy
- ✓ EEOs are not optimised to reduce GHG emissions but are designed to promote energy savings
- ✓ GHG mitigation appears to be a co-benefit
- \checkmark several ways to integrate carbon into an EEO scheme
 - ✓ Unit of the certificate obligation
 - \checkmark The sharing of the obligation
 - ✓ The eligible measures
 - ✓ Differentiate the energies according to their carbon content
- ✓ Enhancement of existing measures in buildings
- ✓ New potential not rewarded by EEO in industry and transportation

