

ECEEE presentation

Nicolas Renté : PhD student

Subject : Challenges of heat pumps coupled with building to make them a flexibility tool for the electricity network

Nicolas Renté, Laure Meljac, Kevin Attonaty, Cong Toan Tran, Pascal Stabat

Introduction and context

Building : **36%** of **total carbon emission** and **40%** of **total primary energy use** (European Commission, 2020) **80%** of energy use in buildings due to Space Heating/Cooling + Domestic Hot Water.

EU solution to limit carbon emission in buildings:

- > Electrification of heating sector especially with Heat Pump : High efficiency systems instead of fossil devices
- Renewable energy sources deployment : Low carbon electricity powerplants

Prominent challenge:

- Intermittent renewable energy sources : Stress on the grid

Moreover in some countries :

- More heat pumps connected to the grid : Increase electricity consumption

More pressure on the grid

Flexibility is needed + buildings will be electrified → **Flexibility with buildings**

Objective of this study

Main goal: State of the art on Flexibility in buildings with Heat Pump

Main findings:

- How flexibility is defined with buildings?
- How flexibility can be linked with Heat Pump?
- How to actively address flexibility ?

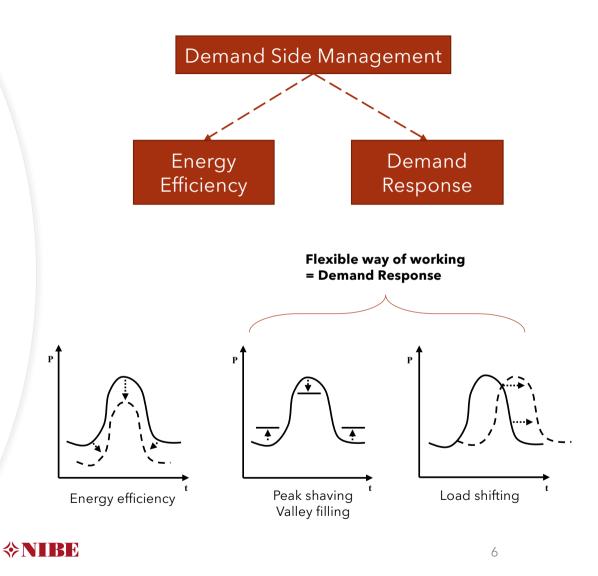
Program

I. Flexibility definition

II. Flexibility with Heat Pump

III. Control strategy

I. Flexibility definition


What is flexibility ?

Definition : Modify **demand** to follow **production**.

Part of Demand Side Management

Need for an energy storage system :

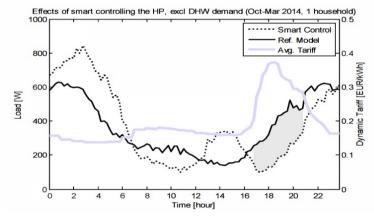
{Heat pump+Building} : native **building thermal inertia** (+ other type of storage if needed)

The different flexibility types

Two ways :

With these 2 ways we can address 2 objectives :

- Increase demand when Supply > Demand in the electric grid → Absorption
- Decrease demand when Supply < Demand →
 Shaving

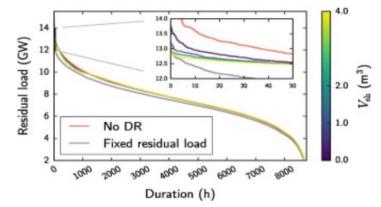


II. Flexibility with Heat Pump

HP Flexibility : A real potential for the grid

Klaasen et al., 2015

Goal : Control a pool of 38 HP



React to price signal over 1 day

ightarrow Successfully reduce load at high price areas

<u>Baeten et al., 2017</u>

Goal : Control a pool of 500 000 HP

Observe demand across the year (descending order)

 \rightarrow Successfully reduce load by hundreds of MW during coldest periods

Need for an adapted way of evaluating

Not an easy task to evaluate flexibility

Example : Might be counterproductive to evaluate only energy savings or bill reduction.

When addressing flexibility :

- Wide variety of configurations (Building, Heat pump, On-site production, Electrical storage,...)
- Wide variety of objectives (Improve on-site consumption, reduce the consumption bill,...)

<u>To evaluate those systems</u> : Development of a many **KPI** (Key Performance Indicator) 2 Price centred examples :

$$FF = \frac{\int_{t_{low-price start}}^{t_{low-price start}} Qdt - \int_{t_{high-price start}}^{t_{high-price start}} Qdt}{\int_{t_{low-price start}}^{t_{low-price start}} Qdt + \int_{t_{high-price start}}^{t_{high-price start}} Qdt} \qquad GSC_{abs} = \frac{\sum_{i=1}^{n} W_{el}^{i} G_{s}^{i}}{W_{el} \overline{G_{s}}}$$

Identified challenges regarding HP flexibility

- A proper evaluation of **flexibility potential** at grid scale and user scale
- Comfort issue
- Loss of performances for the heat pump : COP loss when addressing flexibility
- **Social acceptability** issue : loss of user control over the heating system <u>Sweetman et al.</u>, 2019 : People actively changed the controller tuning

 \rightarrow Emphasize the need for :

- **Sensibilization** towards the need for flexibility
- Incentives + Flexibility market

%NIBE

III. Control strategy

Principles of Heat Pump control

Main goal : Adapt the delivered heat to outside conditions and indoor needs

3 main steps (Air to water variable speed HP) :

- Find the supply water temperature setpoint according to outdoor temperature : Heat curve
- Track the setpoint by modifying the compressor frequency : **PI controller**
- Shut down the heat pump when it is too warm : Hysteresis controller
- → Works well to <u>ensure thermal comfort</u>

But not designed for flexibility. In the literature, 2 identified strategies.

"Simple" way to tackle flexibility : RBC Controller

RBC = Rule Based Controller

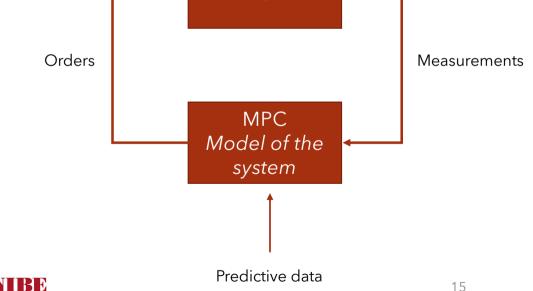
Mainly composed of "if condition".

Example :

- If <u>Price is low</u> then <u>setpoint temperature increased by 2°C</u>.
- If Solar Irradiation is high then setpoint temperature decreased by 2°C.

Pros : Performs quite well / Fast to design

Cons : Rely on predefined rules = non optimal / Non-adaptive


MPC Controller

MPC = Model Predictive Control **Optimization** based control strategy

Mathematical framework :

- A **model** of the system {Building + Heat Pump}
- A set of **constraints**
- An objective function

→ <u>Better results</u> compared to RBC

Real system

Identified challenges regarding actual MPC

- Scalability : Due to model determination
- Not considering enough typical heat pump behaviours (defrosting, cycling effect, DHW charging) → Real MPC integration shows less optimistic results
- Computational cost
- Too much price centred

Conclusion

Flexibility for buildings thanks to heat pump : Major research subject in the years to come

My thesis work falls within this topic.

Focusing at the system level, our **goals** :

- Minimize the Heat Pump performance losses
- Be **adaptive** to <u>multiple configurations</u> (Building and Heat Pump)
- Address both passive and active flexibility
- **Keeping** <u>high comfort</u> level for the end user

Methodology : Data driven MPC to control real HP