

DEEP DECARBONIZATION OF INDUSTRY & SEARCH FOR THE KEY INGREDIENTS

OUTLINE OF THE DUTCH SITUATION, WITH EMPHASIS ON CROSS-BORDER ISSUES

PAUL VAN DEN OOSTERKAMP, FRANK WUBBOLTS, REMKO DETZ

ECEE France

CONTENT THAT YOU CAN EXPECT

GLOBAL DECARBONIZATION/IPCC

TRANSFORMATION OF THE CHEMICAL INDUSTRY

OVERALL SCHEMES OF CHEMICAL PRODUCTION

CHEMICAL INDUSTRY IN THE NETHERLANDS

CO₂ EMISSIONS OF THE CHEMICAL INDUSTRY TRANSITION OPTIONS AND ROADMAP (DUTCH CASE)

CROSS BORDER ISSUES

CONCLUSIONS

ECEE FRANCE, JUNE 6-12, 2022

An industrial transformation is required

- 1. Energy Transition:
 - Decarbonization by electrification
- 2. Transport and Storage:
 - Hydrogen (carriers)
 - Electricity (storage)
- 3. Feedstock Transition:
 - From fossil to Circular feedstocks

www.voltachem.com

GLOBAL DECARBONIZATION

Deep global decarbonization needs:

1. Massive renewable Electricity generation

2. Circular carbon (biomass, carbon waste streams, captured CO₂)

TRANSFORMATION OF THE CHEMICAL INDUSTRY

Today, most chemicals that are being produced are strongly connected to a refinery complex

The refinery produces, among others, refinery gases (C1, C2,C3, C4) and naphtha Typically, some 10 % of these refinery gases/naphtha is sent to a petrochemical complex Here, these streams are converted to platform chemicals (ethylene, propylene, butylene, aromatics (BTX))

Shell Moerdijk, naphtha cracker

Vincenzo Spallina, et al, Energy Conversion and management 154,Dec. 2017, p.244-261

Typical thermal cracking scheme

THO innovation for life

OVERALL SCHEME OF PETROCHEMICALS PRODUCTION

June 6-12, 2022 ECEE France

source: https://www.icis.com/explore/market-focus/chemicals/)

CHEMICAL INDUSTRY IN THE NETHERLANDS

Figure 1-2 Clusters of chemical industries in the Netherlands [4]

- Strongly connected to harbors, to Germany, Belgium
- Electricity network, pipelines for products

Clusters of chemical industry in the Netherlands

(source : Deloitte, "the Chemical industry in the Netherlands 2030-2050, February 2012)

GHG EMISSIONS OF THE CHEMICAL INDUSTRY (EU)

TNO, DECHEMA AND VITO FORMED A TRILATERAL COOPERATION, FOCUSING ON DECARBONISATION OF THE INDUSTRY IN CROSS BORDER REGIONS

CHEMICAL CLUSTERS AND CROSS BORDER ISSUES

Cross border issues

- The structural changes in the chemical industry and the solution options are more complex as these projects require a broad array of stakeholders from different countries. For example, when initiating a common infrastructure project, alignment over a number of conditions is required, which include:
- Financing and risk allocation
- Energy regulation
- CO₂ allocation policy
- Industry policy
- Spatial planning
- Decarbonization incentive schemes
- Environment and safety regulations

TNO, together with VITO in Belgium and Dechema in Germany, have recognized those issues and have formed a joint trilateral partnership for cooperation.

WHAT ARE THE TRANSITION OPTIONS FOR THE CHEMICAL INDUSTRY?

- Renewable electricity infrastructure
- Green or Blue hydrogen infrastructure or local production
- CCS (carbon capture & storage)
- Access to a CO₂ network
- Biobased feedstocks
- Electric furnaces (like naphtha cracker)
- Electric boilers
- Energy efficiency
- Mechanical recycling
- Access to circular carbon
- Novel chemical pathways (in particular C1 chemistry, to connect hydrogen source and carbon source)

EXAMPLE 1

ELECTRIC FURNACE

Source: SABIC, in cooperation with BASF and Linde

EXAMPLE 2

SEWGS TECHNOLOGY TNO

EXAMPLE 3

C1 CHEMISTRY AND CATALYSIS

Carlotta Panzone, et al, Journal of CO_2 utilization, May 2020, p. 314-347

ROADMAP DUTCH CHEMICAL INDUSTRY

A long term innovation and implementation program, with testing of technology, economic analysis, regulation.

Source: www.vnci.nl

CONCLUSIONS

Industrial decarbonization in the chemical industry is required to achieve climate targets ("FIT for 55") for CO₂ reduction

Infrastructure of green electricity, production of green hydrogen and renewable carbon are essential elements for low carbon transformation of the chemical industry, together with new innovative synthesis routes

A dedicated innovation program of the chemical industry, companies, government agencies and knowledge partners should facilitate testing of technology, scale up, economic analysis and develop accompanying regulations

Regional cooperation on long-term implementation programs including border regions are essential elements of this innovation program

For Discussion:

- 1. Is there a future for a European chemical industry in the FIT for 55 landscape?
- 2. What are main issues for the chemical industry in border regions?
- 3. What is the best option for circular carbon?

