

Eirik Romstad

UMB School of Economics and Business Norwegian University of Life Sciences

http://www.umb.no/handelshogskolen/

Motivation and introduction

- The NPS problem: technically difficult and (too?) costly to monitor emissions from single farms or farm fields
- Currently used NPS regulations on inputs and agricultural practices
 - give incentives to change input use or agricultural practices
 - NOT directly to reduce emissions or improve ambient quality in receptors
- Potential gains to be made from an emission or ambient focus, provided information cost issues can be resolved?

Survey of ambient NPS pol.

- Segerson (JEEM 1988) seminal paper
 - ambient tax for the single farmer case where each polluter pays a charge depending on overall ambient levels
 - correct marginal incentives for the last agent in the sequence
 - unequal marginal incentives among agents
 e informationally demanding
 - high monitoring costs
 - excessive tax payments
 incorrect entry/exit incentives

... survey of ambient NPS pol. (2)

- Cabe & Herriges (JEEM 1992)
 - ambient concentrations measured on selected sites using a Bayesian framework
 - vis-a-vis Segerson: overall monitoring costs are reduced
- Hansen (ERE 1998), Horan *et al.* (JEEM 1998)
 - devise lump pay-back schemes for excessive tax collection of the Segerson approach
 - vis-a-vis Segerson: less information demanding, more correct entry-exit incentives

... survey of ambient NPS pol. (3)

- Hansen and Romstad (*EcolEcon*. 2007)
 - Informationally efficient self reporting mechanism that is robust regarding cooperation among agents
 - correct entry-exit incentives
 - information flow among agents
- Romstad (*EcolEcon*. 2003)
 - make polluters jointly responsible (teams) by measuring ambient levels up- and down-strea
 - reduced monitoring costs
 - opens for "trades" among agents
 - conditions for the team to work restrictive?
- works only on small watersheds

Proposed mechanism

 Basic idea: Use models to assess agents' individual pollution and issue taxes/payments on this basis based on self reported input use/ choice of agronomic practices

• Features:

- Contract approach with sign-on fee
- Agents given access to models to enable them to test profit impacts of various actions
- Agents self report planned input use/chosen agronomic practices
- ► agriculture: weather \Rightarrow plans don't work out • additional reports on actual actions

... proposed mechanism (2)

- Mechanism design difficulties:
 - Model results challenged in courts e costly litigation
 - "Solution": contract framework where agents waive their rights to sue
 - Variability between years \Rightarrow variable profits
 - "Solution": not forgiving, but NPS models also used to wash model emissions for clearly non-man made effects
 - False self-reports (planned or actual)
 - "Solution": random monitoring of practices, penalty for false reports

Model framework (1)

Condition for signing a contract:

contract non-contract

 $U_{c}(\pi_{c},I_{c},\boldsymbol{x}_{c})\geq U_{n}(\pi_{n},I_{n},\boldsymbol{x}_{n})$

profits | inputs labor

 Difficulty with [1]: complex modeling wise
 + utility may vary strongly among agents

$$\frac{\partial U_c}{\partial \pi_c} \ge 0 \qquad \frac{\partial U_n}{\partial \pi_n} \ge 0 \qquad [2]$$

|1|

... model framework (2)

 Correlation between yield revenues and environmental payments ⇒ risk correction

Contract:
env.paym. costs

$$\hat{\pi}_c = \hat{p}\hat{y}_c + t\hat{z} + \varphi - c_c(\hat{y}_c, \hat{z}) - r[cov(\hat{p}\hat{y}_c, t_z\hat{z})]$$

 $|$ contr. comp. |
price x quantity risk correction

Non-contract:

$$\widehat{\pi}_n = \widehat{p}\,\widehat{y}_n - c_n(\widehat{y}_n)$$

... model framework (3)

- Important determinants for environmental impacts:
 - human actions: I' (labor) and x' (input use)
 - natural factors: Ω '
- not fully observable by principal, and hence replaced by observable (reported) items
 - human actions: / (labor) and x (input use)

• estimated natural factors: Ω

... model framework (4)

• Environmental model:

$$Z = g(I, \mathbf{x}, \Omega)$$
 [5]

 When agents decide (contract or no contract) their estimated profits depend on their expectations, i.e.,

$$\widehat{z} = g(\widehat{\prime}, \widehat{\mathbf{X}}, \widehat{\Omega})$$
 [6]

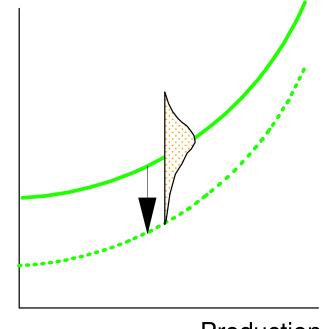
 The principal's assed payment is based on the observed state of nature, and report on labor (practices) and input use

$$\mathbf{\hat{z}}^{r} = g(\mathbf{\hat{z}}, \mathbf{\hat{x}}, \Omega)$$
 [7]

Critical issue

 The regulator's calculated losses for each agent is given by [7]

 $\hat{z}^r = g(\hat{z}, \hat{x}, \Omega)$


- This opens up for individual agents playing "games" with 7 and 7 by reporting values for these that minimize the environmental penalties paid, while doing something else
- What are
 - principal's possibilites of detecting false reports?
 - costs of detecting false reports?

What is to be gained?

- Closer to equal marginal abatement costs among agents e potential for cost savings
 - heterogeneous settings, the larger the savings
- Flexible system that captures agent heterogeneity wo "excessive regulatory detail"
 - conventional NPS regulations become extremely complex
 - targeted, tractable, transparent
- Agents given incentives to seek new solutions to reduce their emissions
 - agents learn/frontier considerations

... what is to be gained?

- Differences in pollution loads among agents with similar per unit (hectare, animal) production levels
 - cfr. diversity parameters in ordinary adverse selection models
- Policies directed at production or input use - limited incentives for the primary objective - reduce pollution the least costly way

²ollution

Production

Preliminary results

- (using EcEcMod 2.0 simulations, i.e., no actual testing of agent responses)
- cost savings realized
 - Iarger the more heterogeneous settings/agents
- models used to remove non-man made variations in emissions
 - reduces needed contract sign-on fee e reduced public expenditures
- size of contract fee influence share of agents accepting the contract (separating equilibrium)

The road ahead ...

- Eutropia modeling suite under development
 - enables testing of testing of acceptance criteria
 - model reliability
 - size of contract sign-on fee
 - provides easy self-reporting on planned activities
 - difficulty: monitoring of actual actions
- A start regarding the use of models onto "other NPS problems": ex. biodiversity
- Low cost experimental economics?