Incorporating IPMVP and Six Sigma Strategies into Monitoring and Evaluation

Prepared for the **2007 ECEEE Summer Study**

Prepared by

Kathleen Carlson, Robert J. Mowris, Ean Jones Robert Mowris & Associates

Introduction

- Energy efficiency offers the largest and most cost-effective opportunity available to mitigate global warming.
- The foundation of energy efficiency is the assumption that Energy Conservation Measures (ECMs) will reduce energy use.
- Customers, businesses, utilities, and government agencies need to know how much energy will be saved and how long savings will last when they invest in energy efficiency.

Introduction (Continued)

- The International Performance Measurement and Verification Protocol (IPMVP) is a worldwide standard for evaluation, measurement, and verification (EM&V) of energy savings.
- Six Sigma is a worldwide performance target for improving efficiency, quality, customer satisfaction, market share, and profits.
- This paper provides an example of how to incorporate IPMVP and Six Sigma strategies into monitoring and evaluation studies of energy savings from ECMs.

What is IPMVP?

- IPMVP is a resource savings-verification tool.
- IPMVP defines four options to quantify energy, power, water, and renewable energy savings from energy or water conservation measures.
- None of the four IPMVP options allow exclusive use of stipulated values.
- Unreasonable stipulations create risks and uncertainties especially if savings are based on unreliable stipulated values or laboratory testing procedures which lack similitude with in situ conditions.

History of IPMVP

- In 1994, USDOE worked with hundreds of industry experts throughout the world to develop a consensus approach to measuring and verifying energy efficiency investments.
- The 1st edition of IPMVP was published in 1996. In 1997, twenty national organizations from a dozen countries worked to publish a 2nd edition.
- In 2002, a 3rd edition was published with input from twenty-five national organizations.
- 4th edition of IPMVP was published in 2006.
- IPMVP has been used for in California for evaluation and monitoring since 2000.

What is Six Sigma?

- Six Sigma is a performance target that applies to a single critical-to-quality characteristic (CTQC) and focuses on nonconformance.
- Six Sigma means 3.4 defects per million opportunities. The typical corporation in the United States operates at 3.5 sigma or 22,750 defects per million opportunities.
- The difference between 3.5 and 6 sigma can be illustrated with an example. If a 150 m² carpet were cleaned to 3.5 sigma, about 3.4 m² would be left dirty. If the carpet were cleaned to Six Sigma, the dirty area would be less than 5 cm².

History of Six Sigma

- Six Sigma was invented at Motorola in 1979.
- Prior to Six Sigma, Motorola spent 5 to 20% of annual revenue correcting poor quality at a cost of \$850 million per year.
- Detecting and fixing defects led Motorola to only four sigma (6,210 defects per million opportunities) – placing it ahead of average US companies, but behind foreign competitors.
- Motorola virtually eliminated defects with Six Sigma by making improvements in all operations producing results more rapidly and cost effectively.

IPMVP and Six Sigma Framework

IPMVP	Six Sigma
1. Recognize or Select IPMVP Options consistent with ECMs.	1. Recognize business state: 1) defect-free products, 2) on-time, 3) lowest cost.
2. Define ECM boundaries.	2. Define plans to realize improvement.
3. Measure ex ante assumptions and CTQ Characteristics.	3. Measure business system, frequency of defects, CTQ Characteristics.
4. Prepare EM&V Plan, analyze gaps in savings.	4. Analyze gaps in performance when and where defects occur, identify variations.
5. Design , install , and test measurement equipment.	5. Improve systems to achieve goals, relationships, and operating tolerances.
6. Commission measures to ensure CTQC compliance.	6. Control or verify CTQC, validate measurement systems, implement controls.
7. Gather energy and operating data from post-retrofit period.	7. Standardize and adopt systems that prove to be best-in-class.
8. Compute and report savings.	8. Integrate best-in-class systems.

How to Incorporate IPMVP and Six Sigma into Evaluation Studies

- Residential air conditioner incentive programs implemented by four public utilities in California.
- Programs realized peak kW and kWh savings by paying incentives to consumers for installing high efficiency air conditioners.
- The programs provided rebates for 1,892 high efficiency air conditioners from 2001 through 2003 with \$1,344,803 of Senate Bill 5X funds from the California Energy Commission.
- Evaluation study budget was \$56,658 (4.2%)

Step 1: Measure Energy Savings

- Six Sigma recognize true state: 1) defect-free products, 2) on-time/schedule, 3) lowest cost.
- IPMVP select IPMVP options.
- Option A measure short-term in-situ EER and compare to manufacturers' data.
- Option B measure kW demand with short-term or continuous measurements during peak period.
- Option C billing data to evaluate kWh savings.
- Option D calibrated building energy simulations to normalize for weather and occupancy.

Step 2: Define ECM Boundaries and Gather Base Year Data

- Six Sigma define plans to improve program.
- IPMVP define and characterize ECM boundaries to improve performance.
- Baseline cooling energy use is evaluated using utility billing data for 50 participant sites.
- Weather data is used to obtain normalized baseline cooling energy use from billing data for each site.

Step 3: Evaluate Assumptions and CTQ Characteristics

- Six Sigma
 — measure systems to support plans.
- Six Sigma 1) what to measure and when to measure, 2) how to measure, and 3) gaining approval to measure. Reluctance to measure is often based on over promising results.
- IPMVP Ex ante kWh and kW savings are 92% and 118% greater than other studies.
- Six Sigma CTQ Characteristics lack of commissioning (RCA, duct leakage, sizing, etc).

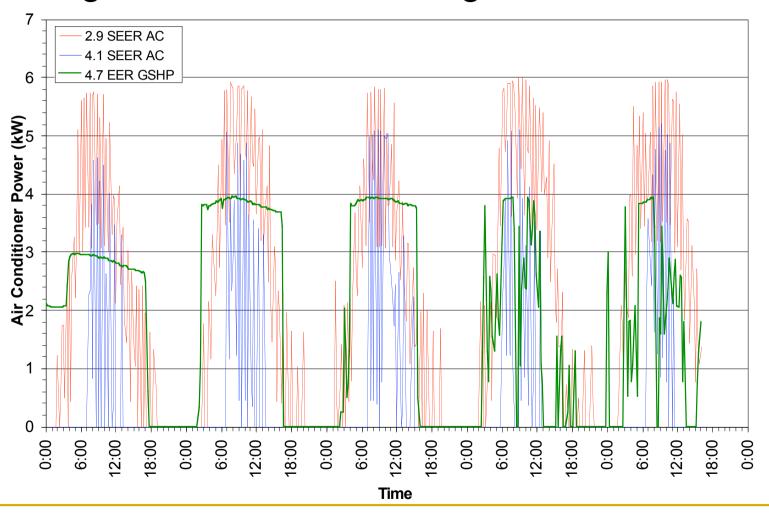
Step 4: Prepare an EM&V Plan to Analyze Gaps

- Six Sigma Analyze gaps energy efficiency performance benchmarks to understand process improvements.
- IPMVP Prepare EM&V plan to define ECM savings (i.e., random or stratified statistical sample, 90% confidence, 10% precision, etc.).

Step 5: Design, Install, and Test Measurement Equipment

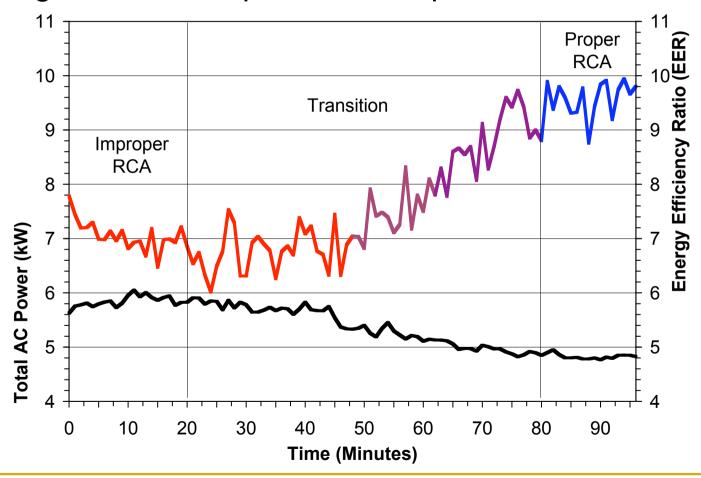
- Six Sigma Improve systems to achieve performance goals.
- Six Sigma Standards for precision, accuracy, traceability, and reliability must be defined.
- IPMVP Design and test measurement equipment.
- IPMVP define analytical methods and reporting requirements to improve the program.

Step 6: Verify or Commission ECMs and Control CTQ Characteristics

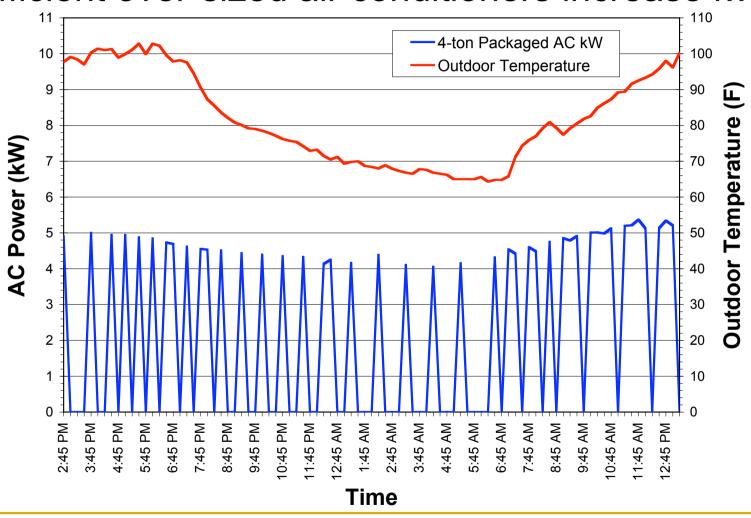

- Six Sigma Evaluate critical-to-qualtiy characteristics including equipment sizing and quality installation (i.e., refrigerant, airflow, expansion valve, duct leakage).
- Six Sigma perform system-level audits to evaluate, identify, analyze, and control CTQ characteristics.
- IPMVP Verify and commission ECMs similar to IEA Annex 40.

Step 7: Gather Post-Retrofit Data and Standardize Best-in-Class

- Six Sigma standardize and adopt systems that prove to be best-in-class.
- IPMVP gather energy and operating data consistent with M&V plan.
- IPMVP Measure EER before and after quality installation to evaluate in-situ efficiency.
- Average EER improvement from proper charge and airflow was 15% with correction of 20%.


Step 7: (cont'd) Measured kW Savings

Average measured kW savings is 0.4 to 0.8 kW.


Step 7: (cont'd) Installation Defects

Installation defects are reduced with verification of refrigerant charge and airflow per IPMVP Option A.

Step 7: (cont'd) Preventing Peak kW

Efficient over-sized air conditioners increase kW.

Step 8: Gather Post-Retrofit Data and Standardize Best-in-Class

- Six Sigma integrate best-in-class systems. Best-in-class systems become integrated when their cross-applicability is interwoven into operating policies and procedures and reinforced through reward and recognition systems (e.g., white tags).
- IPMVP compute and report savings and process evaluation recommendations to improve the programs.

Conclusions

- Net realization rates for the four residential air conditioner rebate programs are 0.53 ± 0.1 for kWh and 0.58 ± 0.04 for kW.
- Realization rates are lower than anticipated due to lower baseline usage, lower ex post savings, and free riders.
- Utilities haven't previously conducted evaluations and were unfamiliar with tracking accomplishments and measuring results.
- Findings for the four utility programs underscore the importance of measuring performance and not over promising results.

Conclusions

- IPMVP and Six Sigma help in understanding failure mechanisms, testing procedures, and design, manufacturing, and installation defects.
- Incorporating IPMVP and Six Sigma strategies into monitoring and evaluation will help utilities, consumers, corporations, and government agencies better understand the value of energy efficiency to reduce global warming.
- Thank you!