eceee Summer Study 2007

Author:

Agneta Persson, WSP Environmental

(agneta.persson@wspgroup.se)

agneta.persson@enterprise.ministry.se

Co-authors:

Heini-Marja Suvilehto, Swedish Energy Agency Monica Gullberg, ÅF-Process AB Anders Göransson, Profu

Background

Multiple need for improved detailed building sector energy statistics:

- EC directives addressing energy (EPBD, ESD, Eco-design…)
- National environmental objectives e.g. "Reduced climate impact", "Clean air", and "A good built environment"
- Detailed statistics on energy end-use patterns in buildings is a prerequisite for structured energy and facility management
- Needed for successful creation, impact prediction, implementation and monitoring of energy policies and actions
- Lack of evaluation significance is often used as an argument against energy-efficiency actions

Background

- Quality of national building energy statistics has during recent years declined
- To improve this, the Swedish National Energy Agency is carrying out a major programme on improved energy statistics
- STIL2 ("Statistik i lokaler 2", "Non-domestic buildings statistics 2"), dealing with improved energy statistics in non-residential buildings, is a part of this programme
- Most recent available energy-statistics for non-domestic buildings before the STIL2 programme were collected in 1990
- Apart from delivering up to date energy statistics, the STIL2 programme also enables comparisons between energy end use in buildings between 1990 and today

The new Swedish energy-statistics programme

- Studies should be repeated at acceptably long intervals, providing time series
- Should build on common **definitions**, enabling use of and combine input from different sources (e.g. building id instead of name of building)
- Terminology should be shared with the implemented directive of declaration of energy performance of buildings (e.g. area A_{temp})
- Results should be included in the national official energy statistics
- De-identified information should be made available for researchers and other actors

Methodology

- STIL2 project runs in six year cycles
- Covers step-wise all categories of tertiary buildings
- End use will in detail be mapped out in approximately 1 000 buildings during six-year periods
- Priority is given to electricity, and its allocation between different end use categories (heating, cooling, lighting, ventilation, etc)
- Total energy end use is also noted
- The first audits were carried out in 2005, including 123 offices and administration buildings
- In 2006 (second year) audits in school buildings were performed
- In 2007 audits will be carried out in health care buildings

Methodology

- A special audit model has been developed for the STIL2 programme
- The model includes detailed information on all kinds of energy end use
- The model includes a spread sheet were all key indicators and important information is summarized + calculation support for a number of key performance indicators

Statistical selection

- Random sampling by Statistics Sweden
- In total 127 office buildings were audited in 2005
- The following criteria were applied:
 - The building area should be between 200 and 30 000 m²
 - At least 80 % of the building should be occupied
 - Buildings included in the study should preferably not sub-deliver energy for heating purposes or electricity to other buildings
 - A full year statistical data on the building's delivered energy should be available (including tenants' end use)
 - Buildings should not include too many tenants with individual electrical metering (limit 12-15)
- A prerequisite for the audits is that property owners and/or facility managers provide support when auditing and provide data on delivered energy and water consumption.

Statistical selection

- The audited office buildings comprises in total 834 000 m² (2.3 % of total national office building area)
- Average building area in the study is 6 790 m², national average office building area is 3 200 m²
- In the audited buildings 90 % of the area was on average used for office purposes. Other occurring businesses were shops and restaurants

Results

■ Decreased relative energy end use in offices

■ Variation in relative energy end use in offices

■ Relative energy end use in offices, 1990 vs 2005

End user and operation electricity

End user and operation electricity

- Important finding: total average **electrical end use** in office buildings **has not increased** during the last 15 years.
- Electricity for lighting has decreased significantly while electricity for ventilation has increased since 1990
- Lighting and ventilation are the largest single electrical end users, together 42 % of total electrical end use in office buildings in 2005
- PC and office equipment is the third largest end user in offices

■ Relative energy end use for lighting in offices

- Lighting is much more energy efficient now
- Ventilation has increased
- Cooling has increased
- Computers and office equipment has increased surprisingly little
- Electrical heating significantly reduced

More information on STIL2

www.energimyndigheten.se
Statistik Förbättrad energistatistik Lokaler

Thank you for your attention!

