Dominique Osso, Paul Baudry Electricité de France - R&D Jean-Sébastien Broc Ecole des Mines de Nantes Jérôme Adnot Ecole des Mines de Paris - Luc Bodineau, Hervé Lefebvre ADEME

Compatibility of the French white certificate program to fulfil the objective of energy savings claimed by the Energy Service Directive

Introduction

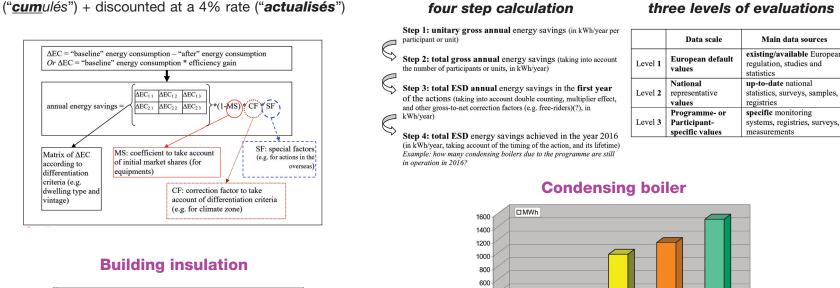
Matrix of ΔEC

ccording to differentiation

riteria (e.g.

intage)

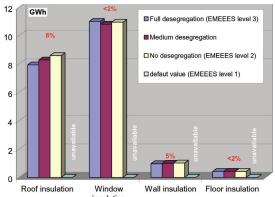
welling type a


Energy Services Directive (ESD – 2006/32/CE) : 9% final energy savings in 2016.

- > How to measure the savings: EMEEES project on evaluation methods.
- > Test two methods (building insulation, condensing boilers) of the French White Certificates (FWC) Scheme (comparison / consistency of EMEEES and FWC approaches).

FWC energy saving accounting FWC energy

savings unit = kWh cumac = lifetime cumulated



400

on heating needs. Different baselines used.

Comparison between EMEEES and FWC:

Building insulation

FWC energy savings assessment depending on the level of evaluation (level 1 = EU, level 2: national, level: 3 specific)

Comparison between EMEEES and FWC:

- FWC and EMEEES formulas are based on heating demand, using consistent physics considerations.

Conclusion The FWC calculation methods fit with the global bottom-up EMEEES methodology (4 steps and 3 evaluation levels).

erence - stock reference - non weighted - weighted -i level 1 EMEEES level 1 EMEEES level 2 EMEEES level 2

FWC energy savings assessment depending on the level of evaluation

(level 1 = EU, level 2: national, level: 3 specific) and the reference baseline (stock, market)

FWC formula is based on final energy whereas EMEEES formula is based

• Higher calculated savings, when more participants' data are used (i.e. level

3 savings > level 2 savings). due to small sample (68 boilers analysed here).

Specific methods (e.g., for insulation actions) may differ between EMEEES

savings unit = final energy saved (in kWh) achieved in the year 2016

Main data sources

i 2009 .

Mai

R&D

081

552

- Same definition for the reference situation or baseline, i.e. the level of heating demand before implementing the insulation actions.
- Rebound effect neglected in FWC whereas the EMEEES method proposes a default value of 20%.

Contact

jbroc@emn.fr dominique.osso@edf.fr

and FWC. Necessity to keep flexibility in order to use the methods best adapted to its context (e.g. data availability).

- Energy savings amounts largely depend on parameters describing the before situation (baseline).
- FWC calculation methods, mainly based on ex-ante deemed estimates, constitute an interesting compromise between accuracy and limited transaction costs.

Acknowledgments

This paper was built on the work carried out under the EMEEES project. Financial support from Intelligent Energy Europe (EIE) program of the European Community is gratefully acknowledged.

MINES PARIS