

Innovative retrofit to improve energy efficiency in public buildings

Kirsten Engelund Thomsen, SBi, DK Karin Buvik, SINTEF, NO Ove Mørck, Cenergia, DK

> eceee 2009 Summer Study on energy efficiency 5 June 2009

> > www.brita-in-pubs.eu

Content

Information about the EU project BRITA in PuBs
Demonstration building: Borgen Community Centre, Norway
Demonstration building: Prøvehallen, Denmark
Discussion

- EU's Sixth Framework Programme announced calls for proposals within the field of Sustainable Energy Systems – Ecobuildings
- Four projects awarded finance: BRITA in PuBs, Sara, Eco-Culture, Demohouse
- The four projects include a great number demo-buildings

Bringing Retrofit Innovation to Application in Public Buildings

Purpose

- The aim is to increase the market penetration of innovative and effective retrofit solutions to improve energy conservation and implement renewable energy sources, with moderate additional costs
- Public buildings of different types are chosen to reach groups of differing age and social origin. Public buildings are used as engines to heighten awareness on energy efficiency

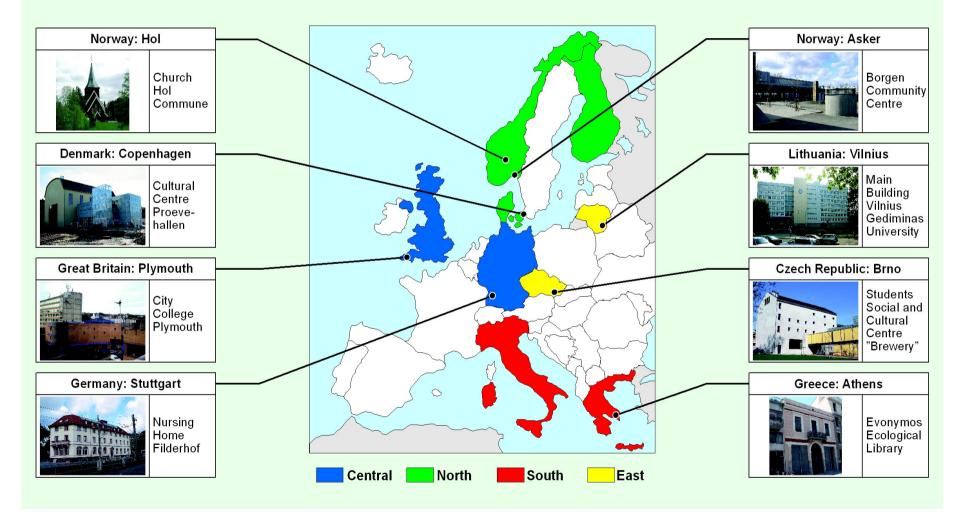
Signification PuBs Bringing Retrofit Innovation to Application in Public Buildings

Structure: 3 main pillars

Demonstration buildings:

- College
- Cultural centre
- Nursery home
- Community centre
- Church
- Library, etc.

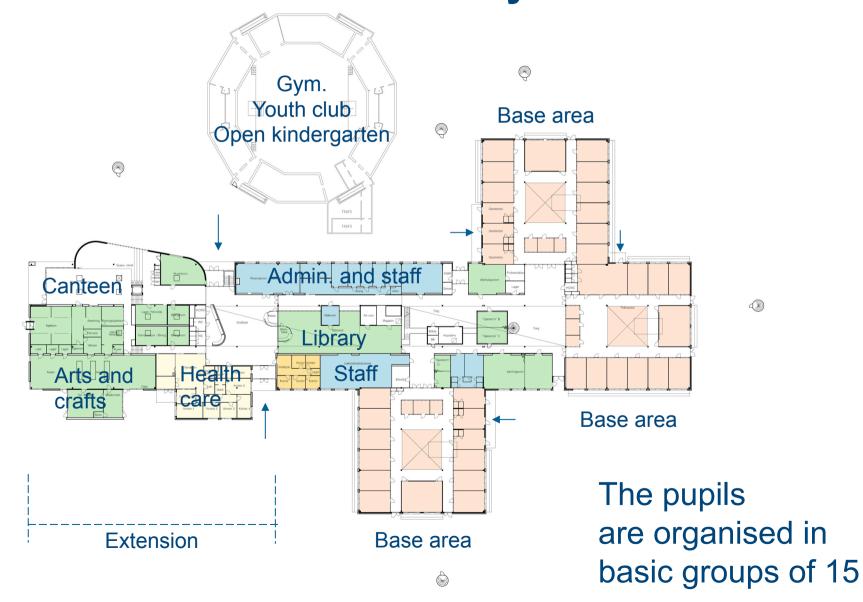
Research work:


- Project
 planning needs
 and financing
 strategies
- Design guidelines
- Internet-based knowledge tool
- Quality control tool-box

Dissemination:

- Training of users and maintenance personnel
- Training of students
- Publishing the work to different target groups

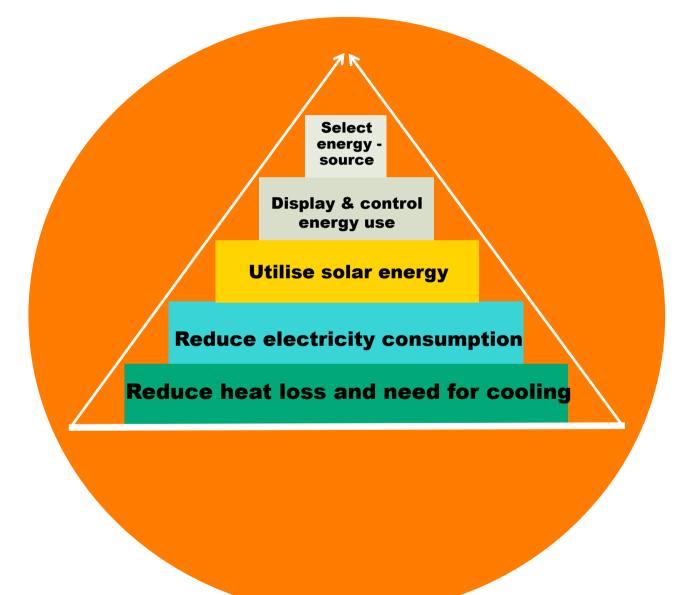
Participating Countries and Demonstration Buildings



Borgen Community Centre

Most visible features:
Daylight openings on the roof and new façades
Decentralised hybrid ventilation systems

Transformation from school to community centre



Common space in a home base area

Design strategy for energy efficiency

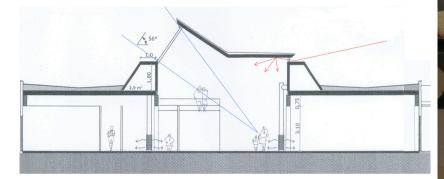
1. Reduce heat losses

Building shape, zoning of room categories, area efficiency. Well insulated and tight building envelope without cold bridges. Efficient heat recovery of ventilation air.

- 2. Reduce electricity consumption
- 3. Utilise solar energy
- 4. Display and control energy use
- 5. Select energy source

Borgen: Envelope insulation, windows replacement, heat recovery

1. Reduce heat losses


2. Reduce electricity consumption

Exploitation of daylight. Low pressure drops in the ventilation system. Reduce the need for cooling by utilising thermal mass in combination with night cooling and efficient solar shading. Energy efficient lighting and equipment.

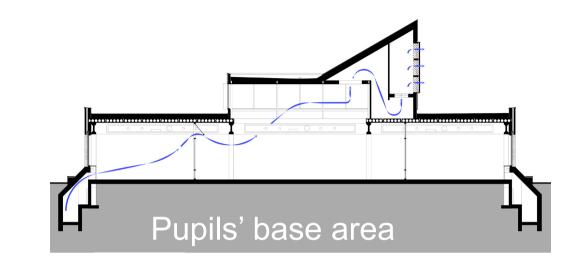

Borgen:

New daylighting openings, new hybrid and natural ventilation systems, solar shading, efficient lighting

Daylighting Communication area

1970 2005

Daylighting and solar shading Home base area


CARAGE A

1511

CONTRACTOR

Ventilation 5 separated systems

- Hybrid ventilation in pupils' base areas:
- Inlet air via culverts
- Displacement ventilation
- Outlet air via heat recovery units placed on roof top

- **1. Reduce heat losses**
- 2. Reduce electricity consumption

3. Utilise solar energy

Optimum window orientation, thermal mass activation, solar collectors, photovoltaic

Borgen:

Materials with high thermal mass capacity in walls (bricks) and floors (concrete)

- 1. Reduce heat losses
- 2. Reduce electricity consumption
- 3. Utilise solar energy
- 4. Display and control energy use Feedback on consumption. Smart house technologies; i.e. demand control of heating, ventilation, lighting and equipment.

Borgen: Feedback, reminders and BEMS. Demand control of heating, ventilation and lighting

- **1. Reduce heat losses**
- 2. Reduce electricity consumption
- 3. Utilise solar energy
- 4. Display and control energy use

5. Select energy source

Heat pump, district heating, firewood, gas, electricity ...

Borgen:

Heat pump. The old oil burners are now used only for back up

Energy savings

The purchased energy consumption is calculated to 50% of new, existing Norwegian school buildings.

	National Benchmark		
Purchased energy consumption	2	220	kWh/m²/a

	Budget for	Budget for Borgen			
	Energy kWh/m ² /a	Power W/m ²			
Space heating	29	30			
Heating ventilation air	20	41			
Water heating	13	10			
Fans and pumps	15	6			
Lighting	23	14			
Equipment	11	8			
Cooling	0	0			
Total	(111)				

Measured before retrofit: 280 kWh/m² a Measured 2007 (normalised): 102 kWh/m² a

Costs

Pay-back time for extra costs compared to conventional building: 7 years

Prøvehallen, Copenhagen, Denmark

Energy saving measures - heating, cooling and ventilation

High efficient ventilation

Improved insulation of façade and roof

Low-e windows

Heating energy savings (lower water use)

BEMS

Combined PV and Thermal heating system

Energy saving measures - electricity

High efficient fans in the ventilation
BEMS
Electrical output of PV/T cells
PV-cells, 19 kWp

Natural ventilation in the gym – windows and roof windows



PV/T solar collectors

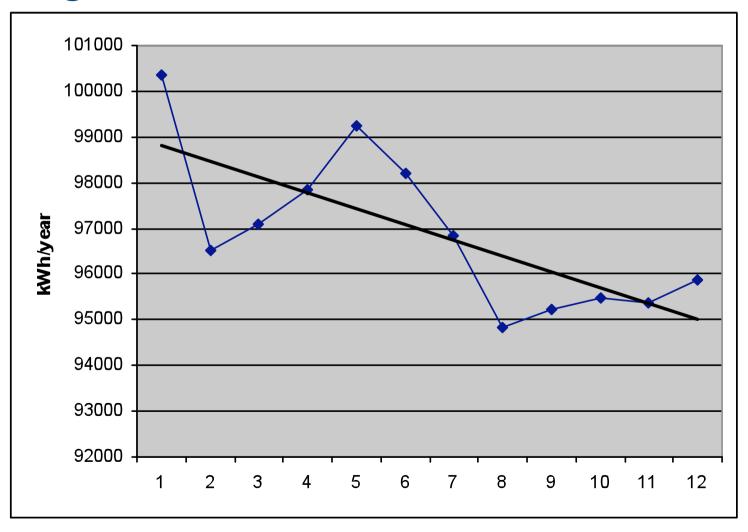
The PV on the gable wall

The bottom line

Space heating requirement:

- Reference: 132 kWh/m²/year (BR 95)
- Target: A 50% reduction: 66 kWh/m²/year
- Result: 53 kWh/m²/year (normalised)

Electricity requirements:


Higher than expected!!!

Life cycle assessment

- Energy Payback Time: 1.3 /year
- Emission Payback Time: 1.1 /year

Monitored yearly energy consumption for space heating shown for the last 12 months

More information:

Bringing Retrofit Innovation to Application in Public Buildings

www.brita-in-pubs.eu

Discussion: Barriers and drivers?

Three main phases in sustainable building:

1. Introduction	2. Growth	3. Volume	
 International intensification	Regional	Regulation	_
cooperation	demonstration	step by step	

Needs in national and international R&D work?
 Economics? Incentives?
 Knowledge building? Regulations?