

Carbon tax and substitution effects in the French industrial sector: an econometric assessment

Nicolas Blanc Gaël Callonnec

ADEME, France

ECEEE 2009 Summer Study, 1-6 June 2009

The Climate-Energy Contribution

- Possible « French carbon tax »?
- Every fossil energy source
- With exonerations:
 - Industrial sector: installations submitted to the EU ETS and double usage
 - Residential sector: up to the mean energy demand of households, and for welfare recipients
 - Tertiary sector: mean energy demand of new buildings

Evaluation of the Substitution Effects

- How to evaluate the response to a carbon tax?
 - Own-price elasticity of demand
 - Substitution effects -> cross-price elasticity
- > the aim of this study: evaluate the substitution effects in the French industrial sector
 - Differenciation between energy sources (coal, heavy fuel oil, heating oil, natural gas, electricity)
 - Demand for one energy source as a function of all energy prices

Existing Models

• Key parameter: the elasticity of substitution:

$$\sigma_{ij} = \frac{\partial \ln(X_i / X_j)}{\partial \ln(P_i / P_i)}$$

- Review of existing models (demand functions):
 - The most used: CES production functions (Cobb-Douglas, Leontieff)
 - -> equal elasticity of substitution among all energy sources
 - Flexible functional forms
 - -> our model was inspired from the Translog function

Source Data

- Demand and price for coal, natural gas, heavy fuel oil, heating oil, electricity
- Annual data 1986-2004 (CEREN, Enerdata)
 - > 19 observations
- In the French manufacturing sector
- Sectors with double usage or non-energy use of fuels were removed
 - Exoneration from carbon tax
 - For these sectors, the fuel they use is not substitutable

Our Model

Lowercase = logarithmic variables:

$$e_{iT} - e_{totT} = A_i + B_i T + C_i T^2 + \sum_{j=1}^n \alpha_{ij} p_{jT} + \beta_i \left(e_{i(T-1)} - e_{tot(T-1)} \right) + \varepsilon_{iT}$$
Share of energy source i in the total

Quadratic time trend energy sources

$$\sum_{j=1}^n \alpha_{ij} p_{jT} + \beta_i \left(e_{i(T-1)} - e_{tot(T-1)} \right) + \varepsilon_{iT}$$
with
$$\sum_{j=1}^n \alpha_{ij} = 0$$

- Easy to evaluate and interpret
- Inspired from the Translog production function and CES demand function
- 9 parameters for 19 observations: all the non-significant terms were removed

The Results: Short-Term and Long-Term Cross-Price Elasticities

$$e_{iT} - e_{totT} = A_i + B_i T + C_i T^2 + \sum_{j=1}^{n} \alpha_{ij} p_{jT} + \beta_i (e_{i(T-1)} - e_{tot(T-1)}) + \varepsilon_{iT}$$

	Coal share	Heavy fuel oil share	Heating oil share	Natural gas share	Electricity share
Coal price	-0.674 <i>-1.04</i>				
Heavy fuel oil price		-0.102 -0,109			
Heating oil price	0.441 <i>0.678</i>		-0.0827 -0.0938		
Natural gas price	-0.521 -0.801			-0.0520 -0.333	0.0510 0.103
Electricity price	0.754 1.16	0.102 0.109	0.0827 0.0938	0.0520 <i>0.333</i>	-0.0510 -0.103

The Results: Comments

- The most significant substitution effect occurs with electricity
- Own-price elasticity is by far the greatest for coal
- Adjustment speed very fast for oil products, slow for electricity and natural gas
- Possible improvements
 - Introduce energy demand in level?
 - Other functional form?
 - Only 19 observations -> Panel data
 - How to take the trend into account?

Conclusion

- Substitution effects remain low and difficult to highlight
- However, elasticities are bigger than in Urga and Walters, 2003: USA from 1960 to 1992 (but different handling of non energy use)
- Only valid for variations in prices of the order of magnitude that occurred between 1986 and 2004
- Has been used to make a sectorial evaluation of the impact of a carbon tax

Thank you for your attention!